The quality of sleep has a deep impact on people's physical and mental health. People with insufficient sleep are more likely to report physical and mental distress, activity limitation, anxiety, and pain. Moreover, in the past few years, there has been an explosion of applications and devices for activity monitoring and health tracking. Signals collected from these wearable devices can be used to study and improve sleep quality. In this paper, we utilize the relationship between physical activity and sleep quality to find ways of assisting people improve their sleep using machine learning techniques. People usually have several behavior modes that their bio-functions can be divided into. Performing time series clustering on activity data, we find cluster centers that would correlate to the most evident behavior modes for a specific subject. Activity recipes are then generated for good sleep quality for each behavior mode within each cluster. These activity recipes are supplied to an activity recommendation engine for suggesting a mix of relaxed to intense activities to subjects during their daily routines. The recommendations are further personalized based on the subjects' lifestyle constraints, i.e. their age, gender, body mass index (BMI), resting heart rate, etc., with the objective of the recommendation being the improvement of that night's quality of sleep. This would in turn serve a longer-term health objective, like lowering heart rate, improving the overall quality of sleep, etc.
Modeling infection spread during pandemics is not new, with models using past data to tune simulation parameters for predictions. These help in understanding of the healthcare burden posed by a pandemic and responding accordingly. However, the problem of how college/university campuses should function during a pandemic is new for the following reasons: (i) social contact in colleges are structured and can be engineered for chosen objectives; (ii) the last pandemic to cause such societal disruption was more than 100 years ago, when higher education was not a critical part of society; (iii) not much was known about causes of pandemics, and hence effective ways of safe operations were not known; and (iv) today with distance learning, remote operation of an academic institution is possible. As one of the first to address this problem, our approach is unique in presenting a flexible simulation system, containing a suite of model libraries, one for each major component. The system integrates agent-based modeling and the stochastic network approach, and models the interactions among individual entities (e.g., students, instructors, classrooms, residences) in great detail. For each decision to be made, the system can be used to predict the impact of various choices, and thus enables the administrator to make informed decisions. Although current approaches are good for infection modeling, they lack accuracy in social contact modeling. Our agent-based modeling approach, combined with ideas from Network Science, presents a novel approach to contact modeling. A detailed case study of the University of Minnesota’s Sunrise Plan is presented. For each decision made, its impact was assessed, and results were used to get a measure of confidence. We believe that this flexible tool can be a valuable asset for various kinds of organizations to assess their infection risks in pandemic-time operations, including middle and high schools, factories, warehouses, and small/medium-sized businesses.
Intelligent transportation systems are a key component in smart cities, and the estimation and prediction of the spatiotemporal traffic state is critical to capture the dynamics of traffic congestion, i.e., its generation, propagation and mitigation, in order to increase operational efficiency and improve livability within smart cities. And while spatiotemporal data related to traffic is becoming common place due to the wide availability of cheap sensors and the rapid deployment of IoT platforms, the data still suffer some challenges related to sparsity, incompleteness, and noise which makes the traffic analytics difficult. In this paper, we investigate the problem of missing data or noisy information in the context of real-time monitoring and forecasting of traffic congestion for road networks in a city. The road network is represented as a directed graph in which nodes are junctions (intersections) and edges are road segments. We assume that the city has deployed high-fidelity sensors for speed reading in a subset of edges; and the objective is to infer the speed readings for the remaining edges in the network; and to estimate the missing values in the segments for which sensors have stopped generating data due to technical problems (e.g., battery, network, etc.). We propose a tensor representation for the series of road network snapshots, and develop a regularized factorization method to estimate the missing values, while learning the latent factors of the network. The regularizer, which incorporates spatial properties of the road network, improves the quality of the results. The learned factors, with a graph-based temporal dependency, are then used in an autoregressive algorithm to predict the future state of the road network with a large horizon. Extensive numerical experiments with real traffic data from the cities of Doha (Qatar) and Aarhus (Denmark) demonstrate that the proposed approach is appropriate for imputing the missing data and predicting the traffic state. It is accurate and efficient and can easily be applied to other traffic datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.