With the growing ubiquity of Internet of Things (IoT), more complex logic is being programmed on resource-constrained IoT devices, almost exclusively using the C programming language. While C provides low-level control over memory, it lacks a number of highlevel programming abstractions such as higher-order functions, polymorphism, strong static typing, memory safety, and automatic memory management. We present Hailstorm, a statically-typed, purely functional programming language that attempts to address the above problem. It is a high-level programming language with a strict typing discipline. It supports features like higher-order functions, tail-recursion, and automatic memory management, to program IoT devices in a declarative manner. Applications running on these devices tend to be heavily dominated by I/O. Hailstorm tracks side effects like I/O in its type system using resource types. This choice allowed us to explore the design of a purely functional standalone language, in an area where it is more common to embed a functional core in an imperative shell. The language borrows the combinators of arrowized FRP, but has discrete-time semantics. The design of the full set of combinators is work in progress, driven by examples. So far, we have evaluated Hailstorm by writing standard examples from the literature (earthquake detection, a railway crossing system and various other clocked systems), and also running examples on the GRiSP embedded systems board, through generation of Erlang. CCS CONCEPTS • Software and its engineering → Compilers; Domain specific languages; • Computer systems organization → Sensors and actuators; Embedded software.
Programming microcontrollers involves low level interfacing with hardware and peripherals that are concurrent and reactive. Such programs are typically written in a mixture of C and assembly using concurrent language extensions (like FreeRTOS tasks and semaphores), resulting in unsafe, callback-driven, error-prone and difficult-to-maintain code.We address this challenge by introducing SenseVM -a bytecode-interpreted virtual machine that provides a message passing based higher-order concurrency model, originally introduced by Reppy, for microcontroller programming. This model treats synchronous operations as first-class values (called Events) akin to the treatment of first-class functions in functional languages. This primarily allows the programmer to compose and tailor their own concurrency abstractions and, additionally, abstracts away unsafe memory operations, common in shared-memory concurrency models, thereby making microcontroller programs safer, composable and easier-to-maintain.Our VM is made portable via a low-level bridge interface, built atop the embedded OS -Zephyr. The bridge is implemented by all drivers and designed such that programming in response to a software message or a hardware interrupt remains uniform and indistinguishable. In this paper we demonstrate the features of our VM through an example, written in a Caml-like functional language, running on the nRF52840 and STM32F4 microcontrollers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.