Programming microcontrollers involves low level interfacing with hardware and peripherals that are concurrent and reactive. Such programs are typically written in a mixture of C and assembly using concurrent language extensions (like FreeRTOS tasks and semaphores), resulting in unsafe, callback-driven, error-prone and difficult-to-maintain code.We address this challenge by introducing SenseVM -a bytecode-interpreted virtual machine that provides a message passing based higher-order concurrency model, originally introduced by Reppy, for microcontroller programming. This model treats synchronous operations as first-class values (called Events) akin to the treatment of first-class functions in functional languages. This primarily allows the programmer to compose and tailor their own concurrency abstractions and, additionally, abstracts away unsafe memory operations, common in shared-memory concurrency models, thereby making microcontroller programs safer, composable and easier-to-maintain.Our VM is made portable via a low-level bridge interface, built atop the embedded OS -Zephyr. The bridge is implemented by all drivers and designed such that programming in response to a software message or a hardware interrupt remains uniform and indistinguishable. In this paper we demonstrate the features of our VM through an example, written in a Caml-like functional language, running on the nRF52840 and STM32F4 microcontrollers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.