Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieval based or static goal-driven. However, in real-world situations, end-users might not have a known and fixed goal beforehand for the task, i.e., they may upgrade/downgrade/update their goal components in real-time to maximize their utility values. Existing VAs are unable to handle such dynamic goal-oriented situations. Methodology Due to the absence of any related dialogue dataset where such choice deviations are present, we have created a conversational dataset called Deviation adapted Virtual Agent(DevVA), with the manual annotation of its corresponding intents, slots, and sentiment labels. A Dynamic Goal Driven Dialogue Agent (DGDVA) has been developed by incorporating a Dynamic Goal Driven Module (GDM) on top of a deep reinforcement learning based dialogue manager. In the course of a conversation, the user sentiment provides grounded feedback about agent behavior, including goal serving action. User sentiment appears to be an appropriate indicator for goal discrepancy that guides the agent to complete the user’s desired task with gratification. The negative sentiment expressed by the user about an aspect of the provided choice is treated as a discrepancy that is being resolved by the GDM depending upon the observed discrepancy and current dialogue state. The goal update capability and the VA’s interactiveness trait enable end-users to accomplish their desired task satisfactorily. Findings The obtained experimental results illustrate that DGDVA can handle dynamic goals with maximum user satisfaction and a significantly higher success rate. The interaction drives the user to decide its final goal through the latent specification of possible choices and information retrieved and provided by the dialogue agent. Through the experimental results (qualitative and quantitative), we firmly conclude that the proposed sentiment-aware VA adapts users’ dynamic behavior for its goal setting with substantial efficacy in terms of primary objective i.e., task success rate (0.88). Practical implications In real world, it can be argued that many people do not have a predefined and fixed goal for tasks such as online shopping, movie booking & restaurant booking, etc. They tend to explore the available options first which are aligned with their minimum requirements and then decide one amongst them. The DGDVA provides maximum user satisfaction as it enables them to accomplish a dynamic goal that leads to additional utilities along with the essential ones. Originality To the best of our knowledge, this is the first effort towards the development of A Dynamic Goal Adapted Task-Oriented Dialogue Agent that can serve user goals dynamically until the user is satisfied.
Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasion strategy annotation. Findings The obtained results and detailed analysis firmly establish the effectiveness of the proposed persuasive virtual assistant over traditional task-oriented virtual assistants. The proposed framework considerably increases the quality of dialogue generation in terms of consistency and repetitiveness. Additionally, our experiment with a few shot and zero-shot settings proves that our meta-learned model learns to quickly adopt new domains with a few or even zero no. of training epochs. It outperforms the non-meta-learning-based approaches keeping the base model constant. Originality To the best of our knowledge, this is the first effort to improve a task-oriented virtual agent’s persuasiveness and domain adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.