Purpose
Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable.
Methodology
Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasion strategy annotation.
Findings
The obtained results and detailed analysis firmly establish the effectiveness of the proposed persuasive virtual assistant over traditional task-oriented virtual assistants. The proposed framework considerably increases the quality of dialogue generation in terms of consistency and repetitiveness. Additionally, our experiment with a few shot and zero-shot settings proves that our meta-learned model learns to quickly adopt new domains with a few or even zero no. of training epochs. It outperforms the non-meta-learning-based approaches keeping the base model constant.
Originality
To the best of our knowledge, this is the first effort to improve a task-oriented virtual agent’s persuasiveness and domain adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.