Physical forces in the form of substrate rigidity or geometrical constraints have been shown to alter gene expression profile and differentiation programs. However, the underlying mechanism of gene regulation by these mechanical cues is largely unknown. In this work, we use micropatterned substrates to alter cellular geometry (shape, aspect ratio, and size) and study the nuclear mechanotransduction to regulate gene expression. Genome-wide transcriptome analysis revealed cell geometry-dependent alterations in actin-related gene expression. Increase in cell size reinforced expression of matrix-related genes, whereas reduced cell-substrate contact resulted in up-regulation of genes involved in cellular homeostasis. We also show that large-scale changes in geneexpression profile mapped onto differential modulation of nuclear morphology, actomyosin contractility and histone acetylation. Interestingly, cytoplasmic-to-nuclear redistribution of histone deacetylase 3 modulated histone acetylation in an actomyosin-dependent manner. In addition, we show that geometric constraints altered the nuclear fraction of myocardin-related transcription factor. These fractions exhibited hindered diffusion time scale within the nucleus, correlated with enhanced serum-response element promoter activity. Furthermore, nuclear accumulation of myocardin-related transcription factor also modulated NF-κB activity. Taken together, our work provides modularity in switching gene-expression patterns by cell geometric constraints via actomyosin contractility.cell matrix interaction | substrate geometry | MRTF-A signaling | chromatin remodelling | transcription control C ells within the local tissue microenvironment acquire nonrandom geometrical organization by cell-matrix and cell-cell interaction. Cellular geometry has been shown to influence nuclear deformation, cytoskeleton reorganization, chromatin compaction, gene expression, growth, apoptosis, and cell division (1-7). Other physical cues such as substrate stretching, fluid flow, substrate rigidity, and cellular topography have also been shown to alter cellular morphology, nuclear architecture, and gene expression (8-11). Regulation of gene expression requires posttranslational modifications of histone tails (12), which alter higher-order chromatin assembly and, hence, the accessibility of gene-regulatory sites by transcriptional machinery (13). In addition, cytoplasmic to nuclear shuttling of transcription factors (TFs) and cofactors are key signaling intermediates rendering specificity. Some of these factors include NF-κB, STAT, and myocardin-related transcription factor (MRTF-A) (14-16). The transcription coactivator yes-associated protein (YAP)/transcription coactivator with PDZ binding domain (TAZ) and MRTF-A have been implicated in nuclear mechanotransduction (17)(18)(19). In a recent study, alterations in cell shape were shown to influence mesenchymal stem cell differentiation (20). However, the mechanisms underlying geometric control of gene expression by the modulation of cytoplasmi...
The cytoskeletal adapter protein talin plays a prominent role in adhesive structures connecting integrins to the actin cytoskeleton. In this work, Kumar et al. use a novel talin sensor to measure talin tension and provide insights into focal adhesion force transmission and mechanosensitivity.
Cell deformability is an important biomarker which can be used to distinguish between healthy and diseased cells. In this study, microfluidics is used to probe the biorheological behaviour of breast cancer cells in an attempt to develop a method to distinguish between non-malignant and malignant cells. A microfabricated fluidic channel design consisting of a straight channel and two reservoirs was used to study the biorheological behaviour of benign breast epithelial cells (MCF-10A) and non-metastatic tumor breast cells (MCF-7). Quantitative parameters such as entry time (time taken for the cell to squeeze into the microchannel) and transit velocity (speed of the cell flowing through the microchannel) were defined and measured from these studies. Our results demonstrated that a simple microfluidic device can be used to distinguish the difference in stiffness between benign and cancerous breast cells. This work lays the foundation for the development of potential microfluidic devices which can subsequently be used in the detection of cancer cells.
Stem cells integrate signals from the microenvironment to generate lineage-specific gene expression programs upon differentiation. Undifferentiated cell nuclei are easily deformable, with an active transcriptome, whereas differentiated cells have stiffer nuclei and condensed chromatin. Chromatin organization in the stem cell state is known to be highly dynamic but quantitative characterizations of its plasticity are lacking. Using fluorescence imaging, we study the spatio-temporal dynamics of nuclear architecture and chromatin compaction in mouse embryonic stem (ES) cells and differentiated states. Individual ES cells exhibit a relatively narrow variation in chromatin compaction, whereas primary mouse embryonic fibroblasts (PMEF) show broad distributions. However, spatial correlations in chromatin compaction exhibit an emergent length scale in PMEFs, although they are unstructured and longer ranged in ES cells. We provide evidence for correlated fluctuations with large amplitude and long intrinsic timescales, including an oscillatory component, in both chromatin compaction and nuclear area in ES cells. Such fluctuations are largely frozen in PMEF. The role of actin and Lamin A/C in modulating these fluctuations is described. A simple theoretical formulation reproduces the observed dynamics. Our results suggest that, in addition to nuclear plasticity, correlated spatio-temporal structural fluctuations of chromatin in undifferentiated cells characterize the stem cell state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.