A hybrid, potentially green solvent system composed of tetraethylene glycol (TEG) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) was investigated across all mole fractions with regard to the solvent properties of the mixture. For this purpose, a suite of absorbance- and fluorescence-based solvatochromic probes were utilized to explore solute-solvent and solvent-solvent interactions existing within the [bmim][PF(6)] + TEG system. These studies revealed an interesting and unusual synergistic solvent effect. In particular, a remarkable "hyperpolarity" was observed in which the E(T) value, comprising dipolarity/polarizability and hydrogen bond donor (HBD) acidity contributions, at intermediate mole fractions of the binary mixture well exceeded that of the most polar pure component (i.e., [bmim][PF(6)]). Independently determined dipolarity/polarizability (pi*) and HBD acidity (alpha) Kamlet-Taft values for the [bmim][PF(6)] + TEG mixtures were also observed to be anomalously high at intermediate mole fractions, whereas hydrogen bond acceptor (HBA) basicities (beta values) were much more in line with the ideal arithmetic values predicted on a mole fraction basis. Two well-established fluorescent polarity probes (pyrene and pyrene-1-carboxaldehyde) further illustrated notable hyperpolarity within [bmim][PF(6)] + TEG mixtures. Moreover, the steady-state fluorescence anisotropy of the molecular rotor rhodamine 6G and the excimer-to-monomer fluorescence ratio exhibited by the fluidity probe 1,3-bis-(1-pyrenyl)propane demonstrated that solute rotation and microfluidity within the [bmim][PF(6)] + TEG mixture were significantly reduced compared with expectations based on simple solvent mixing. A solvent ordering via formation of HBD/HBA complexes involving the C-2 proton of the [bmim(+)] cation and oxygen atoms of TEG, as well as interactions between [PF(6)(-)] and the terminal hydroxyl groups of TEG, is proposed to account for the observed behavior. Further spectroscopic evidence of strong intersolvent interactions occurring within the [bmim][PF(6)] + TEG mixture was provided, inter alia, by substantial frequency shifts in the [PF(6)(-)] asymmetric stretching mode observed in the infrared spectra as TEG was incrementally added to [bmim][PF(6)]. Overall, our observations contribute to a growing literature advocating the notion that ionic liquids and certain organic solvents form ordered, nanostructured, or microsegregated phases upon mixing.
Poly(ethylene glycols) (PEGs) and room-temperature ionic liquids (ILs) are both projected as possible alternatives to volatile organic compounds (VOCs). Their potential usage in chemical applications, however, is often hampered by their limited and, in some cases, undesired individual physicochemical properties. Properties of mixtures of PEG with a common IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) are assessed via responses of three fluorescence probes: pyrene (Py) and pyrene-1-carboxaldehyde (PyCHO) are the dipolarity sensing probes and 1,3-bis-(1-pyrenyl) propane (BPP) is the probe for microfluidity. All three probes demonstrate anomalous fluorescence behavior within the mixture of [bmim][PF6] with four different PEGs of average molecular weight (MW) 200, 400, 600, and 1500 g.mol(-1), respectively, across complete composition range. Cybotactic region dipolarity of the probe Py within the mixtures is observed to be higher than that expected from ideal additive behavior. PyCHO lowest energy fluorescence maxima implying the static dielectric constant around the cybotactic region shows values within the mixtures to be even higher than that in neat PEG, the component having higher static dielectric constant of the two, clearly indicating the milieu to have anomalously high dipolarity. "Hyperpolarity" inherent to the PEG+[bmim][PF6] mixture is confirmed. Intramolecular excimer-to-monomer fluorescence intensity ratio of BPP indicates the microfluidity within the mixture to be even lower than that within neat [bmim][PF6], the component with lowest microfluidity. Presence of strong solvent-solvent interactions within the mixture is proposed to be the major reason for the anomalous fluorescence probe responses. Specifically, extensive hydrogen-bonded network involving termini hydroxyls of PEGs and PF6- as well as ethoxy/hydroxyl oxygens of PEGs and the C2-H of bmim+ is proposed to be responsible for the unusual outcomes. Fluorescence probe responses are shown to be adequately predicted by a four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) model. Unusually altered physicochemical properties are demonstrated to be the key feature of the "hybrid green" PEG+IL systems.
Hybrid "green" solvent systems composed of room-temperature ionic liquids (ILs) and poly(ethylene glycols) (PEGs) may have enormous future potential. Solvatochromic absorbance probe behavior is used to assess the physicochemical properties of the mixture composed of IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) and PEG (average molecular weights of 200, 400, 600, and 1500) at ambient conditions. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., E(T)(N), indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][PF 6] + PEG mixtures to be even higher than that of neat [bmim][PF(6)], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (pi*) obtained separately from the electronic absorbance response of probe N, N-diethyl-4-nitroaniline shows a trend similar to E(T)(N ) thus confirming the unusually high dipolarity/polarizability of the [bmim][PF(6)] + PEG mixtures. Similar to E(T)(N ) and pi*, the HBD acidity (alpha) of [bmim][PF(6)] + PEG mixtures is also observed to be anomalously high. Contrary to what is observed for E(T)(N ), pi*, and alpha, the hydrogen-bond accepting (HBA) basicity (beta) of the [bmim][PF(6)] + PEG mixtures is observed to be lower than that predicted from ideal additive behavior indicating diminished HBA basicity of the mixture as compared to its neat components. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within [bmim][PF(6)] + PEG mixtures. It is demonstrated that [bmim][PF(6)] + PEG mixtures possess physicochemical properties that are superior to those of either the neat IL or the neat PEG.
The hypothesis that aqueous, rather than pure, ionic liquids provide substantially altered physicochemical properties and versatile/increased solute solvation is addressed. Solvatochromic absorbance probes are utilized to gather information on aqueous solutions of a completely water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF 4 ). A simplistic solvation model suggests possible preferential solvation of a watersoluble betaine dye by bmimBF 4 . The lowest-energy electronic absorption band of this dye is further used to interpret dipolarity/polarizability and hydrogen-bond donating (HBD) acidity of aqueous bmimBF 4 . On the basis of the responses of two other probes, N,N-diethyl-4-nitroaniline and 4-nitroaniline, dipolarity/polarizability, HBD acidity, and hydrogen-bond accepting basicity are separately assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.