Membrane preparations from suspension-cultured cells of French bean (Phaseolus vulgaris L.) contained callose synthase (EC 2.4.1.34) activity which was preserved upon solubilisation. Following elicitor treatment of cell cultures, increased activity could be extracted and this increase was maintained during purification. The enzyme was purified by high-pressure liquid chromatography and active fractions showed a variable association of two polypeptides of relative molecular masses (M(r)) 55,000 and 65,000, the latter being in excess. The M(r)-65,000 polypeptide was purified to homogeneity and an antibody raised to it. This antibody showed complex effects on callose synthase activity when incubated with membrane and soluble extracts. In comparison with other systems, the M(r)-55,000 subunit is likely to represent the catalytic subunit while the M(r)-65,000 polypeptide is a possible regulatory subunit. The M(r)-65,000 polypeptide was immunolocated in membranes at sites of callose synthesis in the plant, in cell plates, in sieve plates, at the plasma membrane-wall interface of wounded cells and in papillae in infected cells.
In order to determine why the activated methyl cycle is up-regulated in plants undergoing defence responses to fungal pathogens we have monitored the utilisation of methyl groups derived from methionine in cell-suspension cultures of alfalfa (Medicago sativa L.) treated for various times with fungal elicitor, by carrying out a parallel labelling study with [(35)S]methionine and [methyl-(3)H]methionine. The distribution of the two radiolabels among the medium, soluble cellular components and cell wall was then determined. In the absence of elicitor the utilisation of the two radiolabels was similar. However, in the presence of the elicitor the total incorporation of radioactivity from [methyl-(3)H]methionine into metabolites was far greater than from [(35)S]methionine, indicating that the methyl label had been utilised in methylation reactions. Elicitor treatment resulted in up to a sixfold increase in the use of (3)H-methyl groups in the methylation of hydrophobic metabolites. In the period 0-24 h after elicitor treatment, increased methylation was directed largely into the synthesis of the isoflavonoid phytoalexin medicarpin and related metabolites. Newly synthesized phytoalexins were exported into the medium, while a significant proportion of the medicarpin accumulating in the cell in the early stages of elicitation was derived from the hydrolysis of its respective conjugate. Elicitor treatment also modified the incorporation of (3)H-methyl groups into the cell wall. Between 0 and 24 h after elicitor treatment the methylation of pectin in the cell wall declined. After 24 h, pectin methylation recovered and was associated with an increase in the methylation of other wall-bound polysaccharide components. Since no other major metabolic sink for the increased methylation was determined we conclude that the increased activity of the activated methyl cycle during defence interactions in alfalfa is required to support phytoalexin synthesis and cell wall modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.