Epigenome-wide association studies (EWAS) seek to quantify associations between traits/exposures and DNA methylation measured at thousands or millions of CpG sites across the genome. In recent years, the increase in availability of DNA methylation measures in population-based cohorts and case-control studies has resulted in a dramatic expansion of the number of EWAS being performed and published. To make this rich source of results more accessible, we have manually curated a database of CpG-trait associations (with p<1x10-4) from published EWAS, each assaying over 100,000 CpGs in at least 100 individuals. From January 7, 2022, The EWAS Catalog contained 1,737,746 associations from 2,686 EWAS. This includes 1,345,398 associations from 342 peer-reviewed publications. In addition, it also contains summary statistics for 392,348 associations from 427 EWAS, performed on data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Gene Expression Omnibus (GEO). The database is accompanied by a web-based tool and R package, giving researchers the opportunity to query EWAS associations quickly and easily, and gain insight into the molecular underpinnings of disease as well as the impact of traits and exposures on the DNA methylome. The EWAS Catalog data extraction team continue to update the database monthly and we encourage any EWAS authors to upload their summary statistics to our website. Details of how to upload data can be found here: http://www.ewascatalog.org/upload. The EWAS Catalog is available at http://www.ewascatalog.org.
Epigenome-wide association studies (EWAS) seek to quantify associations between traits/exposures and DNA methylation measured at thousands or millions of CpG sites across the genome. In recent years, the increase in availability of DNA methylation measures in population-based cohorts and case-control studies has resulted in a dramatic expansion of the number of EWAS being performed and published. To make this rich source of results more accessible, we have manually curated a database of CpG-trait associations (with p<1x10-4) from published EWAS, each assaying over 100,000 CpGs in at least 100 individuals. From January 7, 2022, The EWAS Catalog contained 1,737,746 associations from 2,686 EWAS. This includes 1,345,398 associations from 342 peer-reviewed publications. In addition, it also contains summary statistics for 392,348 associations from 427 EWAS, performed on data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Gene Expression Omnibus (GEO). The database is accompanied by a web-based tool and R package, giving researchers the opportunity to query EWAS associations quickly and easily, and gain insight into the molecular underpinnings of disease as well as the impact of traits and exposures on the DNA methylome. The EWAS Catalog is available at http://www.ewascatalog.org.
Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and β) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-β-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.