BackgroundThe digestion of dietary starch in humans is initiated by salivary α-amylase, an endo-enzyme that hydrolyzes starch into maltose, maltotriose and larger oligosaccharides. Salivary amylase accounts for 40 to 50% of protein in human saliva and rapidly alters the physical properties of starch. Importantly, the quantity and enzymatic activity of salivary amylase show significant individual variation. However, linking variation in salivary amylase levels with the oral perception of starch has proven difficult. Furthermore, the relationship between copy number variations (CNVs) in the AMY1 gene, which influence salivary amylase levels, and starch viscosity perception has not been explored.Principal FindingsHere we demonstrate that saliva containing high levels of amylase has sufficient activity to rapidly hydrolyze a viscous starch solution in vitro. Furthermore, we show with time-intensity ratings, which track the digestion of starch during oral manipulation, that individuals with high amylase levels report faster and more significant decreases in perceived starch viscosity than people with low salivary amylase levels. Finally, we demonstrate that AMY1 CNVs predict an individual's amount and activity of salivary amylase and thereby, ultimately determine their perceived rate of oral starch viscosity thinning.ConclusionsBy linking genetic variation and its consequent salivary enzymatic differences to the perceptual sequellae of these variations, we show that AMY1 copy number relates to salivary amylase concentration and enzymatic activity level, which, in turn, account for individual variation in the oral perception of starch viscosity. The profound individual differences in salivary amylase levels and salivary activity may contribute significantly to individual differences in dietary starch intake and, consequently, to overall nutritional status.
In the current study, we determined whether increased digestion of starch by high salivary amylase concentrations predicted postprandial blood glucose following starch ingestion. Healthy, nonobese individuals were prescreened for salivary amylase activity and classified as high (HA) or low amylase (LA) if their activity levels per minute fell 1 SD higher or lower than the group mean, respectively. Fasting HA (n = 7) and LA (n = 7) individuals participated in 2 sessions during which they ingested either a starch (experimental) or glucose solution (control) on separate days. Blood samples were collected before, during, and after the participants drank each solution. The samples were analyzed for plasma glucose and insulin concentrations as well as diploid AMY1 gene copy number. HA individuals had significantly more AMY1 gene copies within their genomes than did the LA individuals. We found that following starch ingestion, HA individuals had significantly lower postprandial blood glucose concentrations at 45, 60, and 75 min, as well as significantly lower AUC and peak blood glucose concentrations than the LA individuals. Plasma insulin concentrations in the HA group were significantly higher than baseline early in the testing session, whereas insulin concentrations in the LA group did not increase at this time. Following ingestion of the glucose solution, however, blood glucose and insulin concentrations did not differ between the groups. These observations are interpreted to suggest that HA individuals may be better adapted to ingest starches, whereas LA individuals may be at greater risk for insulin resistance and diabetes if chronically ingesting starch-rich diets.
Objective-Growth factors, including brain-derived neurotrophic factor (BDNF), are polypeptides that are involved in the maintenance, survival, and death of central and peripheral cells. Numerous growth factors have been identified in saliva and are thought to promote wound healing and maintenance of the oral epithelium. The aim of this study was to determine if BDNF is also found in human saliva.Methods-Whole, unstimulated saliva samples (n=30) were analyzed by SDS-PAGE and Western blot using an anti-human BDNF antibody. Proteolytic cleavage products were similarly assessed following the incubation of pooled saliva with N-glycanase F and plasmin. Subjects genotyped for the BDNF Val66Met single nucleotide polymorphism (SNP).Results-These experiments revealed the presence of immunoreactive bands at 14, 32 and 34 kD, corresponding to mature (mBDNF) and proBDNF, as well as a truncated pro-form at 24 kD. Not every sample contained all forms of BDNF. Treatment with N-glycanase and plasmin reduced the size of the higher molecular weight bands, confirming the glycosylated pro-form of BDNF. mBDNF was detected significantly less often in subjects with the Val66Met SNP, compared to those without the polymorphism (X 2 = 4.05; P<0.05).Conclusions-While the function of salivary BDNF still requires elucidation, these findings suggest that it may be possible to use saliva in lieu of blood in future studies of BDNF and the Val66Met polymorphism.
In order to assess the physiological significance of human salivary BDNF, we have optimized a sensitive and specific enzyme-linked immunosorbent assay (ELISA). We determined the range of salivary BDNF concentrations, the impact of saliva collection method, and the association of salivary BDNF with several biological characteristics. The ELISA had a detection limit of 62.5 pg/ml, and intra-assay and inter-assay precisions of 4.2% and 8.2%, respectively. Salivary BDNF concentrations were highly variable between individuals (median= 618 pg/ml) and were affected by collection method. Women had significantly higher levels of salivary BDNF than men. There was no relationship, however, between salivary BDNF levels and the other biological characteristics examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.