Staphylococcus aureus virulence is coordinated through the Agr quorum-sensing system to produce an array of secreted molecules. One important class of secreted virulence factors is the phenol-soluble modulins (PSMs). PSMs are small-peptide toxins that have recently been characterized for their roles in infection, biofilm development, and subversion of the host immune system. In this work, we demonstrate that the signal peptide of the S. aureus quorum-sensing signal, AgrD, shares structural and functional similarities with the PSM family of toxins. The efficacy of this peptide (termed N-AgrD) beyond AgrD propeptide trafficking has never been described before. We observe that N-AgrD, like the PSMs, is found in the amyloid fibrils of S. aureus biofilms and is capable of forming and seeding amyloid fibrils in vitro. N-AgrD displays cytolytic and proinflammatory properties that are abrogated after fibril formation. These data suggest that the N-AgrD leader peptide affects S. aureus biology in a manner similar to that described previously for the PSM peptide toxins. Taken together, our findings suggest that peptide cleavage products can affect cellular function beyond their canonical roles and may represent a class of virulence factors warranting further exploration.
Genome editing via the CRISPR/Cas9 RNA-guided nuclease system has opened up exciting possibilities for genetic analysis. However, technical challenges associated with homology-directed repair have proven to be roadblocks for producing changes in the absence of unwanted, secondary mutations commonly known as "scars." To address these issues, we developed a 2-stage, markerassisted strategy to facilitate precise, "scarless" edits in Drosophila with a minimal requirement for molecular screening. Using this method, we modified 2 base pairs in a gene of interest without altering the final sequence of the CRISPR cut sites. We executed this 2-stage allele swap using a novel transformation marker that drives expression in the pupal wings, which can be screened for in the presence of common eye-expressing reporters. The tools we developed can be used to make a single change or a series of allelic substitutions in a region of interest in any D. melanogaster genetic background as well as in other Drosophila species.
Drosophila pigmentation has been a fruitful model system for understanding the genetic and developmental mechanisms underlying phenotypic evolution. For example, prior work has shown that divergence of the tan gene contributes to pigmentation differences between two members of the virilis group: Drosophila novamexicana, which has a light yellow body color, and D. americana, which has a dark brown body color. Quantitative trait locus (QTL) mapping and expression analysis has suggested that divergence of the ebony gene might also contribute to pigmentation differences between these two species. Here, we directly test this hypothesis by using CRISPR/Cas9 genome editing to generate ebony null mutants in D. americana and D. novamexicana and then using reciprocal hemizygosity testing to compare the effects of each species' ebony allele on pigmentation. We find that divergence of ebony does indeed contribute to the pigmentation divergence between species, with effects on both the overall body color as well as a difference in pigmentation along the dorsal abdominal midline. Motivated by recent work in D. melanogaster, we also used the ebony null mutants to test for effects of ebony on cuticular hydrocarbon (CHC) profiles. We found that ebony affects CHC abundance in both species, but does not contribute to qualitative differences in the CHC profiles between these two species. Additional transgenic resources for working with D. americana and D. novamexicana, such as white mutants of both species and yellow mutants in D. novamexicana, were generated in the course of this work and are also described. Taken together, this study advances our understanding of loci contributing to phenotypic divergence and illustrates how the latest genome editing tools can be used for functional testing in non-model species.
Background: miR-33 family members are well characterized regulators of cellular lipid levels in mammals. Previous studies have shown that overexpression of miR-33 in Drosophila melanogaster leads to elevated triacylglycerol (TAG) levels in certain contexts. Although loss of miR-33 in flies causes subtle defects in larval and adult ovaries, the effects of miR-33 deficiency on lipid metabolism and other phenotypes impacted by metabolic state have not yet been characterized. Results:We found that loss of miR-33 predisposes flies to elevated TAG levels, and we identified genes involved in TAG synthesis as direct targets of miR-33, including atpcl, midway, and Akt1. miR-33 mutants survived longer upon starvation but showed greater sensitivity to an oxidative stressor. We also found evidence that miR-33 is a negative regulator of cuticle pigmentation and that miR-33 mutants show a reduction in interfollicular stalk cells during oogenesis. Conclusion:Our data suggest that miR-33 is a conserved regulator of lipid homeostasis, and its targets are involved in both degradation and synthesis of fatty acids and TAG. The constellation of phenotypes involving tissues that are highly sensitive to metabolic state suggests that miR-33 serves to prevent extreme fluctuations in metabolically sensitive tissues.
16Drosophila pigmentation has been a fruitful model system for understanding the genetic and 17 developmental mechanisms underlying phenotypic evolution. For example, prior work has shown 18 that divergence of the tan gene contributes to pigmentation differences between two members of the 19 virilis group: Drosophila novamexicana, which has a light yellow body color, and D. americana, 20which has a dark brown body color. Quantitative trait locus (QTL) mapping and expression analysis 21 has suggested that divergence of the ebony gene might also contribute to pigmentation differences 22 between these two species. Here, we directly test this hypothesis by using CRISPR/Cas9 genome 23 editing to generate ebony null mutants in D. americana and D. novamexicana and then using 24 reciprocal hemizygosity testing to compare the effects of each species' ebony allele on pigmentation. 25 We find that divergence of ebony does indeed contribute to the pigmentation divergence between 26 species, with effects on both the overall body color as well as a difference in pigmentation along the 27 dorsal abdominal midline. Motivated by recent work in D. melanogaster, we also used the ebony null 28 mutants to test for effects of ebony on cuticular hydrocarbon (CHC) profiles. We found that ebony 29 affects CHC abundance in both species, but does not contribute to qualitative differences in the CHC 30 profiles between these two species. Additional transgenic resources for working with D. americana 31 and D. novamexicana, such as white mutants of both species and yellow mutants in D. novamexicana, 32were generated in the course of this work and are also described. Taken together, this study advances 33 our understanding of loci contributing to phenotypic divergence and illustrates how the latest genome 34 editing tools can be used for functional testing in non-model species. 35 36 ebony affects pigmentation and CHCs 2 This is a provisional file, not the final typeset article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.