We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-andfire models, interacting with current-based or conductance-based synapses, using clock-driven or NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.
Synaptic plasticity is considered to be the biological substrate of learning and memory. In this document we review phenomenological models of short-term and long-term synaptic plasticity, in particular spike-timing dependent plasticity (STDP). The aim of the document is to provide a framework for classifying and evaluating different models of plasticity. We focus on phenomenological synaptic models that are compatible with integrate-and-fire type neuron models where each neuron is described by a small number of variables. This implies that synaptic update rules for short-term or long-term plasticity can only depend on spike timing and, potentially, on membrane potential, as well as on the value of the synaptic weight, or on low-pass filtered (temporally averaged) versions of the above variables. We examine the ability of the models to account for experimental data and to fulfill expectations derived from theoretical considerations. We further discuss their relations to teacher-based rules (supervised learning) and reward-based rules (reinforcement learning). All models discussed in this paper are suitable for large-scale network simulations.
The balanced random network model attracts considerable interest because it explains the irregular spiking activity at low rates and large membrane potential fluctuations exhibited by cortical neurons in vivo. In this article, we investigate to what extent this model is also compatible with the experimentally observed phenomenon of spike-timing-dependent plasticity (STDP). Confronted with the plethora of theoretical models for STDP available, we reexamine the experimental data. On this basis, we propose a novel STDP update rule, with a multiplicative dependence on the synaptic weight for depression, and a power law dependence for potentiation. We show that this rule, when implemented in large, balanced networks of realistic connectivity and sparseness, is compatible with the asynchronous irregular activity regime. The resultant equilibrium weight distribution is unimodal with fluctuating individual weight trajectories and does not exhibit development of structure. We investigate the robustness of our results with respect to the relative strength of depression. We introduce synchronous stimulation to a group of neurons and demonstrate that the decoupling of this group from the rest of the network is so severe that it cannot effectively control the spiking of other neurons, even those with the highest convergence from this group.
The availability of efficient and reliable simulation tools is one of the mission-critical technologies in the fast-moving field of computational neuroscience. Research indicates that higher brain functions emerge from large and complex cortical networks and their interactions. The large number of elements (neurons) combined with the high connectivity (synapses) of the biological network and the specific type of interactions impose severe constraints on the explorable system size that previously have been hard to overcome. Here we present a collection of new techniques combined to a coherent simulation tool removing the fundamental obstacle in the computational study of biological neural networks: the enormous number of synaptic contacts per neuron. Distributing an individual simulation over multiple computers enables the investigation of networks orders of magnitude larger than previously possible. The software scales excellently on a wide range of tested hardware, so it can be used in an interactive and iterative fashion for the development of ideas, and results can be produced quickly even for very large networks. In contrast to earlier approaches, a wide class of neuron models and synaptic dynamics can be represented.
Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.