Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets.
Riboflavin receptors are overexpressed
in malignant cells from
certain human breast and prostate cancers, and they constitute a group
of potential surface markers important for cancer targeted delivery
of therapeutic agents and imaging molecules. Here we report on the
fabrication and atomic force microscopy (AFM) characterization of
a core–shell nanocomposite consisting of a gold nanoparticle
(AuNP) coated with riboflavin receptor-targeting poly(amido amine)
dendrimer. We designed this nanocomposite for potential applications
such as a cancer targeted imaging material based on its surface plasmon
resonance properties conferred by AuNP. We employed AFM as a technique
for probing the binding interaction between the nanocomposite and
riboflavin binding protein (RfBP) in solution. AFM enabled precise
measurement of the AuNP height distribution before (13.5 nm) and after
chemisorption of riboflavin-conjugated dendrimer (AuNP–dendrimer;
20.5 nm). Binding of RfBP to the AuNP–dendrimer caused a height
increase to 26.7 nm, which decreased to 22.8 nm when coincubated with
riboflavin as a competitive ligand, supporting interaction of AuNP–dendrimer
and its target protein. In summary, physical determination of size
distribution by AFM imaging can serve as a quantitative approach to
monitor and characterize the nanoscale interaction between a dendrimer-covered
AuNP and target protein molecules in vitro.
Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.
Atomic force microscopy force-pulling experiments have been used to measure the binding forces between folic acid (FA) conjugated poly(amidoamine) (PAMAM) dendrimers and folate binding protein (FBP). The generation 5 (G5) PAMAM conjugates contained an average of 2.7, 4.7, and 7.2 FA per dendrimer. The most probable rupture force was measured to be 83, 201, and 189 pN for G5-FA2.7, G5-FA4.7, and G5-FA7.2, respectively. Folic acid blocking experiments for G5-FA7.2 reduced the frequency of successful binding events and increased the magnitude of the average rupture force to 274 pN. The force data is interpreted as arising from a network of van der Waals and electrostatic interactions that form between FBP and G5 PAMAM dendrimer resulting in a binding strength far greater than that expected for an interaction between FA and FBP alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.