The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Proper cell-cell communication through physical contact is crucial for a range of fundamental biological processes including, cell proliferation, migration, differentiation, and apoptosis and for the correct function of organs and other multicellular tissues. The spatial and temporal arrangements of these cellular interactions in vivo are dynamic and lead to higher-order function that is extremely difficult to recapitulate in vitro. The development of three-dimensional (3D), in vitro model systems to investigate these complex, in vivo interconnectivities would generate novel methods to study the biochemical signaling of these processes, as well as provide platforms for tissue engineering technologies. Herein, we develop and employ a strategy to induce specific and stable cell-cell contacts in 3D through chemoselective cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. This strategy uses liposome fusion for the delivery of ketone or oxyamine groups to different populations of cells for subsequent cell assembly via oxime ligation. We demonstrate how this method can be used for several applications including, the delivery of reagents to cells for fluorescent labeling and cell-surface engineering, the formation of small, 3D spheroid cell assemblies, and the generation of large and dense, 3D multilayered tissue-like structures for tissue engineering applications.
The ability to tailor plasma membranes with specific glycans may enable the control of signaling events that are critical for proper development and function. We report a method to modify cell surfaces with specific sulfated chondroitin sulfate (CS) glycosaminoglycans using chemically modified liposomes. Neurons engineered to display CS-E-enriched polysaccharides exhibited increased activation of neurotrophin-mediated signaling pathways and enhanced axonal growth. This approach provides a facile, general route to tailor cell membranes with biologically active glycans and demonstrates the potential to direct important cellular events through cell-surface glycan engineering.
In this study, we have rewired cell surfaces with ketone and oxyamine molecules based on liposome fusion for applications in cell-surface engineering. Lipid vesicles, functionalized with ketone and oxyamine molecules, display complementary chemistry and undergo recognition, docking, and subsequent fusion upon covalent oxime bond formation. Liposome fusion was characterized by several techniques including matrix-assisted laser-desorption/ionization mass spectrometry (MALDI-MS), light scattering, fluorescence resonance energy transfer (FRET), and transmission electron microscopy (TEM). When cultured with cells, ketone- and oxyamine-containing liposomes undergo spontaneous membrane fusion to present the respective molecules from cell surfaces. Ketone-functionalized cell surfaces serve as sites for chemoselective ligation with oxyamine-conjugated molecules. We tailored and fluorescently labeled cell surfaces with an oxyamine-conjugated rhodamine dye. As an application of this cell-surface engineering strategy, ketone- and oxyamine-functionalized cells were patterned on oxyamine- and ketone-presenting surfaces, respectively. Cells adhered, spread, and proliferated in the patterned regions via interfacial oxime linkage. The number of ketone molecules on the cell surface was also quantified by flow cytometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.