BackgroundMucosa-associated Escherichia coli are frequently found in the colonic mucosa of patients with colorectal adenocarcinoma, but rarely in healthy controls. Chronic mucosal E. coli infection has therefore been linked to colonic tumourigenesis. E. coli strains carrying eae (encoding the bacterial adhesion protein intimin) attach intimately to the intestinal mucosa and are classed as attaching and effacing E. coli (AEEC). Enteropathogenic Escherichia coli (EPEC) are the most common form of AEEC identified in man. EPEC utilise a type III secretion system to translocate effector proteins into host cells and infection induces wide-ranging effects on the host cell proteome. We hypothesised that EPEC infection could influence molecular pathways involved in colorectal tumourigenesis.Methodology/Principal FindingsWhen co-cultured with human colorectal cell lines, EPEC dramatically downregulated the expression of key DNA mismatch repair proteins MSH2 and MLH1 in an attachment specific manner. Cytochrome c staining and TUNEL analysis confirmed that this effect was not a consequence of apoptosis/necrosis. Ex vivo human colonic mucosa was co-cultured with EPEC and probed by immunofluorescence to locate adherent bacteria. EPEC entered 10% of colonic crypts and adhered to crypt epithelial cells, often in the proliferative compartment. Adenocarcinoma and normal colonic mucosa from colorectal cancer patients (n = 20) was probed by immunofluorescence and PCR for AEEC. Mucosa-associated E. coli were found on 10/20 (50%) adenocarcinomas and 3/20 (15%) normal mucosa samples (P<0.05). AEEC were detected on 5/20 (25%) adenocarcinomas, but not normal mucosa samples (P<0.05).Significance/ConclusionsThe ability of EPEC to downregulate DNA mismatch repair proteins represents a novel gene-environment interaction that could increase the susceptibility of colonic epithelial cells to mutations and therefore promote colonic tumourigenesis. The potential role of AEEC in colorectal tumourigenesis warrants further investigation.
Vascular injury causes acute systemic inflammation and mobilizes endothelial progenitor cells (EPCs) and endothelial cell (EC) colony-forming units (EC-CFUs). Whether such mobilization occurs as part of a nonspecific acute phase response or is a phenomenon specific to vascular injury remains unclear. We aimed to determine the effect of acute systemic inflammation on EPCs and EC-CFU mobilization in the absence of vascular injury. Salmonella typhus vaccination was used as a model of acute systemic inflammation. In a double-blind randomized crossover study, 12 healthy volunteers received S. typhus vaccination or placebo. Phenotypic EPC populations enumerated by flow cytometry [CD34+VEGF receptor (VEGF)R-2+CD133+, CD14+VEGFR-2+Tie2+, CD45−CD34+, as a surrogate for late outgrowth EPCs, and CD34+CXCR-4+], EC-CFUs, and serum cytokine concentrations (high sensitivity C-reactive protein, IL-6, and stromal-derived factor-1) were quantified during the first 7 days. Vaccination increased circulating leukocyte (9.8 ± 0.6 vs. 5.1 ± 0.2 × 109cells/l, P < 0.0001), serum IL-6 [0.95 (0–1.7) vs. 0 (0–0) ng/l, P = 0.016], and VEGF-A [60 (45–94) vs. 43 (21–64) pg/l, P = 0.006] concentrations at 6 h and serum high sensitivity C-reactive protein at 24 h [2.7 (1.4–3.6) vs. 0.4 (0.2–0.8) mg/l, P = 0.037]. Vaccination caused a 56.7 ± 7.6% increase in CD14+cells at 6 h ( P < 0.001) and a 22.4 ± 6.9% increase in CD34+cells at 7 days ( P = 0.04). EC-CFUs, putative vascular progenitors, and the serum stromal-derived factor-1 concentration were unaffected throughout the study period ( P > 0.05 for all). In conclusion, acute systemic inflammation causes nonspecific mobilization of hematopoietic progenitor cells, although it does not selectively mobilize putative vascular progenitors. We suggest that systemic inflammation is not the primary stimulus for EPC mobilization after acute vascular injury.
CD133(+)CD34(+)KDR(+) cells but not CFU-EPCs vary during the menstrual cycle. Our findings suggest a potential role for circulating EPCs in the normal cycle of physiological angiogenesis and repair of the uterine endometrium that is independent of circulating sex steroids or inflammatory mediators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.