Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, little is currently known about the behavioural effects of feeding a hyper-energetic cafeteria diet (CD) during the lactational period when offspring behaviour is tested during early adolescence. To this end, 23 days old offspring from dams (Wistar) fed on CD during lactation were tested in either the open-field or the elevated plus-maze for exploration and anxietyrelated behaviour. On postnatal day 9, maternal behaviour and non-maternal behaviour of the dam was assessed. It was hypothesized that lactational CD feeding would reduce anxiety in the offspring. CD-fed dams had a higher energy intake, due to an overconsumption of sugars and fats. When offspring from these dams were exposed to the open field after weaning, their locomotor activity was increased. They entered the more aversive inner zone of the open-field after a shorter latency, made more entries into and spent more time in the inner zone. Anxiety-related behaviour was not affected upon exposure to the elevated plus maze, suggesting anxiolysis in the open-field only. Increased maternal licking/grooming behaviour could possibly contribute to the anxiolytic phenotype as observed in the offspring from the CD group. In conclusion, we demonstrate that lactational overfeeding impacts on the development of behaviour in the early adolescent rat.
In the version of this article initially published, the name of Ana Margarita Baldión-Elorza, of the SCOURGE Consortium, appeared incorrectly (as Ana María Baldion) and has now been amended in the HTML and PDF versions of the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.