Owing to their various application fields and biological properties, natural products and essential oils (EO) in particular are nowadays attracting more attention as alternative methods to control plant pathogens and pests, weeds, and for post-harvest applications. Additionally, to overcome EO stability issues and low persistence of effects, EO encapsulation in β-cyclodextrin (β-CD) could represent a promising avenue. Thus, in this work, the EO distilled from two aromatic plants (Salvia sclarea L. and Coriandrum sativum L.) have been evaluated in vitro for their antifungal, herbicidal and insecticidal activities, against major plant pathogens and pests of agronomical importance. Both plants were grown on unpolluted and trace-element-polluted soils, so as to investigate the effect of the soil pollution on the EO compositions and biological effects. These EO are rich in oxygenated monoterpenes (clary sage and coriander seeds EO), or aliphatic aldehydes (coriander aerial parts EO), and were unaltered by the soil pollution. The tested EO successfully inhibited the growth of two phytopathogenic fungi, Zymoseptoria tritici and Fusarium culmorum, displaying IC50 ranging from 0.46 to 2.08 g L−1, while also exerting anti-germinative, herbicidal, repellent and fumigant effects. However, no improvement of the EO biological effects was observed in the presence of β-CD, under these in vitro experimental conditions. Among the tested EO, the one from aerial parts of coriander displayed the most significant antifungal and herbicidal effects, while the three of them exerted valuable broad-range insecticidal effects. As a whole, these findings suggest that EO produced on polluted areas can be of great interest to the agricultural area, given their faithful chemical compositions and valuable biological effects.
Leafminer insects of the genus Liriomyza are small flies whose larvae feed on the internal tissue of some of the most important crop plants for the human diet. Several of these pest species are highly uniform from the morphological point of view, meaning molecular data represents the only reliable taxonomic tool useful to define cryptic boundaries. In this study, both mitochondrial and nuclear molecular markers have been applied to investigate the population genetics of some Tunisian populations of the polyphagous species Liriomyza cicerina, one of the most important pest of chickpea cultivars in the whole Mediterranean region. Molecular data have been collected on larvae isolated from chickpea, faba bean, and lentil leaves, and used for population genetics, phylogenetics, and species delimitation analyses. Results point toward high differentiation levels between specimens collected on the three different legume crops, which, according to the species delimitation methods, are also sufficient to define incipient species differentiation and cryptic species occurrence, apparently tied up with host choice. Genetic data have also been applied for a phylogenetic comparison among Liriomyza species, further confirming their decisive role in the systematic studies of the genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.