We present statistical investigation of the high‐latitude ionospheric current systems in the Northern Hemisphere (NH) and Southern Hemisphere (SH) during low (Kp < 2) and high (Kp ≥ 2) geomagnetic activity levels. Nearly 4 years of vector magnetic field measurements are analyzed from the two parallel flying Swarm A and C satellites using the spherical elementary current system method. The ionospheric horizontal and field‐aligned currents (FACs) for each auroral oval crossing are calculated. The distributions of the mean values of FACs as well as the horizontal curl‐free and divergence‐free currents in magnetic latitude and magnetic local time for each hemisphere and activity level are presented. To estimate the NH/SH current ratios for the two activity levels, we remove seasonal bias in the number of samples and in the Kp distribution by bootstrap resampling. This is done in such a manner that there are equal number of samples from each season in each Kp bin. We find that for the low activity level, the currents in the NH are stronger than in the SH by 12±4% for FAC, 9±2% for the horizontal curl‐free current, and 8±2% for the horizontal divergence‐free current. During the high activity level, the hemispheric differences are not statistically significant. This suggests that the local ionospheric conditions, such as magnetic field strength or daily variations in insolation, may be important and play a larger role during quiet than disturbed periods. This issue must be studied further.
Effect of interplanetary magnetic field on hemispheric asymmetry in ionospheric horizontal and field-aligned currents during different seasons.
Gonzalez et al. (1994) defined a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current strong enough to exceed some key threshold of the quantifying storm time Dst index. The two processes responsible for causing the majority of storms are interplanetary coronal mass ejections (ICMEs) and high speed streams (HSSs) with their associated solar wind stream interaction regions (SIRs) (Kamide, Baumjohann, et al., 1998).
We present a statistical investigation of the seasonal effect on hemispheric asymmetry in the auroral currents during low (Kp < 2) and high (Kp ≥ 2) geomagnetic activity. Five years of magnetic data from the Swarm satellites has been analyzed by applying the spherical elementary current system (SECS) method. Bootstrap resampling has been used to remove the seasonal differences between the hemispheres in the data set. In general, the currents are larger in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH). Asymmetry is larger during low than high Kp and during local winter and local autumn than local summer and local spring. For all Kp conditions together, the NH/SH ratio for FACs in winter, autumn, spring, and summer are 1.17 ± 0.05, 1.14 ± 0.05, 1.07 ± 0.04, and 1.02 ± 0.04, respectively. The largest asymmetry is observed during low Kp in local winter, when the excess in the NH currents is 21 ± 5% in FAC, 14 ± 3% in curl-free (CF) and 10 ± 3% in divergence-free (DF) current. We also find that evening sector (13-24 MLT) contributes more to the high NH/SH ratio than the morning (01-12 MLT) sector. The physical mechanisms producing the hemispheric asymmetry are not presently understood. We calculated the solar-induced ionospheric conductances during low Kp conditions from the IRI model. The model conductance NH/SH ratios are above 1 in autumn and spring, similar to the currents, but below 1 for winter, which is in contradiction with the currents. Therefore, we do not consider solar-induced conductances as the main explanation for hemispheric asymmetry.
We present a statistical investigation of the seasonal effect on hemispheric asymmetry in the auroral currents during low (Kp < 2) and high (Kp ≥ 2) geomagnetic activity. Five years of magnetic data from the Swarm satellites has been analyzed by applying the spherical elementary current system (SECS) method. Bootstrap resampling has been used to remove the seasonal differences between the hemispheres in the data set. In general, the currents are larger in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH). Asymmetry is larger during low than high Kp and during local winter and local autumn than local summer and local spring. For all Kp conditions together, the NH/SH ratio for FACs in winter, autumn, spring, and summer are 1.17 ± 0.05, 1.14 ± 0.05, 1.07 ± 0.04, and 1.02 ± 0.04, respectively. The largest asymmetry is observed during low Kp in local winter, when the excess in the NH currents is 21 ± 5% in FAC, 14 ± 3% in curl-free (CF) and 10 ± 3% in divergence-free (DF) current. We also find that evening sector (13-24 MLT) contributes more to the high NH/SH ratio than the morning (01-12 MLT) sector. The physical mechanisms producing the hemispheric asymmetry are not presently understood. We calculated the solar-induced ionospheric conductances during low Kp conditions from the IRI model. The model conductance NH/SH ratios are above 1 in autumn and spring, similar to the currents, but below 1 for winter, which is in contradiction with the currents. Therefore, we do not consider solar-induced conductances as the main explanation for hemispheric asymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.