A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.
The spatial and temporal changes in land use/land cover (LULC) have proceeded rapidly as a result of increased urban populations and anthropogenic activities.The modification of LULC and the interaction of humans and the environment have caused variability of dynamic changes to the environment and climate [1]. Several flood plains and river deltaic regions are highly vulnerable to flooding due to rapid urbanization and the threat of changed climatic events such as tempe-rature rise, wind storms, and heavy precipitation [2]. Therefore, it is required to monitor the modification of LULC under Pol. J. Environ. Stud. Vol. 26, No. 6 (2017), 2833-2840 Original Research Landsat-5 Time Series Analysis for AbstractRapid urbanization and the risk of climatic variations, including a rise in temperature and increased rainfall, have urged research in the development of methods and techniques to monitor the modification of land use/land cover (LULC). This study employed the normalized differencing vegetative index (NDVI) and semi-supervised image classification (SSIC) integrated with high-resolution Google Earth images of the Kuantan River Basin (KRB) in Malaysia. The Landsat-5 (TM) images for the years 1993, 1999, and 2010 were selected. The results from both classifications provided a consistent accuracy of assessment with a reasonable level of agreement. However, SSIC was found to be more precise than NDVI. Overall accuracy was 82% for 1993 and 1999, and 80% for 2010, with the kappa values ranging from 0.789 to 0.761. Meanwhile, NDVI accuracy was attained at 64% with kappa value at 0.527 for 1999. In addition, 70% and 72% accuracy were obtained for 1993 and 2010 with estimated kappa values of 0.651 and 0.672, respectively. The study is anticipated to assist decision makers for better emergency response and sustainable land development action plans, thus mitigating the challenges of rapid urban growth.
The Water Erosion Prediction Project (WEPP) model is utilized to simulate the sediment and runoff processes. According to previous studies, WEPP model provides impressive results in watersheds of diverse climates and scales. It is also capable of modeling the sediment transportation processes and consequently predicting subsequent deposition sites. In this study, the geo-spatial interface for WEPP (GeoWEPP) was employed as a GIS framework to extract the data required from the ASTER Global Digital Elevation Model (ASTER-GDEM) dataset which was subsequently used as the model input. The case study was based on monthly data consisting of average sediment and runoff estimation from the Emameh subbasin, in northern Iran. The model estimations were validated through field measurements. Two statistical measures of co-efficiency including the Nash-Sutcliffe Efficiency (NSE), and the coefficient of determination (R 2 ) were considered to evaluate how well the model predictions could explain the variability of observations in the field. The model performed favorably as corroborated by a reasonably high NSE of 0.99 and an R 2 value of 0.92 for sediment. In the case of runoff, the results were slightly inferior, but still acceptable with an NSE of 0.76 and R 2 value of 0.62.
Due to land use and climate changes, more severe and frequent floods occur worldwide. Flood simulation as the first step in flood risk management can be robustly conducted with integration of GIS, RS and flood modeling tools. The primary goal of this research is to examine the practical use of public domain satellite data and GIS-based hydrologic model. Firstly, database development process is described. GIS tools and techniques were used in the light of relevant literature to achieve the appropriate database. Watershed delineation and parameterizations were carried out using cartographic DEM derived from digital topography at a scale of 1:25 000 with 30 m cell size and SRTM elevation data at 30 m cell size. The SRTM elevation dataset is evaluated and compared with cartographic DEM. With the assistance of statistical measures such as Correlation coefficient (<i>r</i>), Nash-Sutcliffe efficiency (NSE), Percent Bias (PBias) or Percent of Error (PE). According to NSE index, SRTM-DEM can be used for watershed delineation and parameterization with 87% similarity with Topo-DEM in a complex and underdeveloped terrains. Primary TRMM (V6) data was used as satellite based hytograph for rainfall-runoff simulation. The SCS-CN approach was used for losses and kinematic routing method employed for hydrograph transformation through the reaches. It is concluded that TRMM estimates do not give adequate information about the storms as it can be drawn from the rain gauges. Event-based flood modeling using HEC-HMS proved that SRTM elevation dataset has the ability to obviate the lack of terrain data for hydrologic modeling where appropriate data for terrain modeling and simulation of hydrological processes is unavailable. However, TRMM precipitation estimates failed to explain the behavior of rainfall events and its resultant peak discharge and time of peak
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.