The diet of Antarctic krill (Euphausia superba) has been studied using a variety of techniques, but current methods still suffer from problems that are difficult to solve. This study examined an alternative approach utilizing DNA as a prey biomarker. Methods were developed for the preservation, extraction, and identification of prey DNA from krill collected in the field. Group-specific polymerase chain reaction (PCR) was used to amplify diatom prey (Phylum: Bacillariophyta) and the results from DNA clone libraries were compared with microscopic diet analysis. DNA analysis was superior to microscopy for prey detection. However, differences in prey relative abundance estimates between the two techniques suggested some bias in the DNA-based estimates. Quantification showed that large amounts of prey DNA had been successfully preserved and extracted. Overall the results suggest that the application of DNA-based diet analysis to krill warrants further investigation, particularly for prey that are difficult to study using other methods.
Two novel mutations within the coding region of the NDP gene were found, one associated with a severe disease phenotypes of Norrie disease and the other with FEVR. A deletion within the non-coding region was associated with only mild-regressed ROP, despite the presence of low birthweight, prematurity and exposure to oxygen. In full-term children with retinal detachment only 15% appear to have the full features of Norrie disease and this is important for counselling parents on the possible long-term outcome.
<p><strong>Abstract.</strong> The Southern Ocean provides a vital service by absorbing about one sixth of humankind's annual emissions of CO<sub>2</sub>. This comes with a cost &#8211; an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution. To quantify their presence, we used coulometric measurement of particulate inorganic carbonate (PIC) on particles filtered from surface seawater into two size fractions: 50&#8211;1000&#8201;&#956;m to capture foraminifera (the most important biogenic carbonate forming zooplankton) and 1&#8211;50&#8201;&#956;m to capture coccolithophores (the most important biogenic carbonate forming phytoplankton). Ancillary measurements of biogenic silica (BSi) and particulate organic carbon (POC) provided context, as estimates of the abundance of diatoms (the most abundant phytoplankton in polar waters), and total microbial biomass, respectively. Results for 9 transects from Australia to Antarctica in 2008&#8211;2015 showed low levels of PIC compared to northern hemisphere polar waters. Coccolithophores slightly exceeded the biomass of diatoms in Subantarctic waters, but their abundance decreased more than 30-fold poleward, while diatom abundances increased, so that on a molar basis PIC was only 1&#8201;% of BSi in Antarctic waters. This limited importance of coccolithophores in the Southern Ocean is further emphasized in terms of their associated POC, representing less than 1&#8201;% of total POC in Antarctic waters and less than 10&#8201;% in Subantarctic waters. NASA satellite ocean colour based PIC estimates were in reasonable agreement with (though somewhat higher than) the shipboard results in Subantarctic waters, but greatly over-estimated PIC in Antarctic waters. Contrastingly, the NASA Ocean Biogeochemical Model (NOBM) shows coccolithophores as overly restricted to Subtropical and northern Subantarctic waters. The cause of the strong southward decrease in PIC abundance in the Southern Ocean is not yet clear. Poleward decrease in pH is small and while calcite saturation decreases strongly southward it remains well above saturation (>&#8201;2). Nitrate and phosphate variations would predict a poleward increase. Temperature and competition with diatoms for limiting iron appear likely to be important. While the future trajectory of coccolithophore distributions remains uncertain, their current low abundances suggest small impacts on overall Southern Ocean pelagic ecology.</p>
Sex identification is a critical component of threatened species monitoring programs. For cryptic, rare and endangered species that have low detection probabilities, efficient monitoring can be achieved by analysing noninvasively collected DNA with molecular genetic techniques. In this study, we report a multiplex PCR-based sexing assay for the endangered Tasmanian devil (Sarcophilus harrisii). The assay uses a new species-specific primer set that amplifies a fragment of the SRY gene and an autosomal microsatellite marker as an internal positive control. We show that this assay provides highly accurate and robust sex identification (99% accuracy ) where sex could be assigned of devil DNA from tissue, hair and faeces. This simple, yet reliable sexing assay is an important step towards effective monitoring and management of Tasmanian devils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.