The main objective of this study is to review and summarize recent findings on electroencephalographic patterns in individuals with chronic pain. We also discuss recent advances in the use of quantitative Electroencephalography (qEEG) for the assessment of pathophysiology and biopsychosocial factors involved in its maintenance over time. Data collection took place from February 2014 to July 2015 in PubMed, SciELO and PEDro databases. Data from cross-sectional studies and longitudinal studies, as well as clinical trials involving chronic pain participants were incorporated into the final analysis. Our primary findings related to chronic pain were an increase of theta and alpha EEG power at rest, and a decrease in the amplitude of evoked potentials after sensory stimulation and cognitive tasks. This review suggests that qEEG could be considered as a simple and objective tool for the study of brain mechanisms involved in chronic pain, as well as for identifying the specific characteristics of chronic pain condition. In addition, results show that qEEG probably is a relevant outcome measure for assessing changes in therapeutic studies.
Fibromyalgia is a chronic pain syndrome that is associated with maladaptive plasticity in neural central circuits. One of the neural circuits that are involved in pain in fibromyalgia is the primary motor cortex. We tested a combination intervention that aimed to modulate the motor system: transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) and aerobic exercise (AE). In this phase II, sham-controlled randomized clinical trial, 45 subjects were assigned to 1 of 3 groups: tDCS + AE, AE only, and tDCS only. The following outcomes were assessed: intensity of pain, level of anxiety, quality of life, mood, pressure pain threshold, and cortical plasticity, as indexed by transcranial magnetic stimulation. There was a significant effect for the group-time interaction for intensity of pain, demonstrating that tDCS/AE was superior to AE [F = (13, 364) 2.25, p = 0.007] and tDCS [F = (13, 364) 2.33, p = 0.0056] alone. Post-hoc adjusted analysis showed a difference between tDCS/AE and tDCS group after the first week of stimulation and after 1 month intervention period (p = 0.02 and p = 0.03, respectively). Further, after treatment there was a significant difference between groups in anxiety and mood levels. The combination treatment effected the greatest response. The three groups had no differences regarding responses in motor cortex plasticity, as assessed by TMS. The combination of tDCS with aerobic exercise is superior compared with each individual intervention (cohen's d effect sizes > 0.55). The combination intervention had a significant effect on pain, anxiety and mood. Based on the similar effects on cortical plasticity outcomes, the combination intervention might have affected other neural circuits, such as those that control the affective-emotional aspects of pain. Trial registration: (www.ClinicalTrials.gov), identifier NTC02358902.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.