BackgroundAdequate patient knowledge about medications is essential for appropriate drug taking behavior and patient adherence. This study aims to assess and quantify the level of knowledge and adherence to medications among Palestinian geriatrics living with chronic diseases and to investigate possible associated socio-demographic characteristics.Methods and FindingsWe conducted a cross-sectional study during June 2013 and January 2014 among Palestinian geriatrics ≥60 years old living with chronic disease in the West Bank and East Jerusalem. A stratified random sample was selected and a questionnaire-assisted interview was applied for data collection. T-test was applied for bivariate analyzing and one-way ANOVA test was applied for multivariate analyses.ResultsA total of 1192 Palestinian geriatrics were studied. The average age was 70.3 (SD=8.58) years and ranged from 60-110 years. The sample comprised 659 (55.3%) females and 533 (44.7%) males. The global knowledge and global adherence scores were (67.57%) and (89.29%), respectively. Adequate levels of knowledge were 71.4%, and of adherence 75%, which were recorded for 705 (59.1%) and 1088 (91.3%) participants, respectively. Significant higher levels of global knowledge and global adherence were recorded for males, and for participants who hold a Bachelor’s degree, those who live on their own, and did physical activity for more than 40 hours/week (p-value <0.05). Furthermore, workers, participants with a higher monthly income, and non-smokers have a higher knowledge level with (p-value <0.05). We found positive correlation between participants’ global adherence and global knowledge (r=0.487 and p-value <0.001). Negative correlation was found between participants’ global knowledge and adherence with age (r= -0.236, p-value <0.001 and r= -0.211 and p-value <0.001, respectively. Negative correlation between global knowledge and the number of drugs taken (r= -0.130, p-value <0.001) was predicted.ConclusionWe concluded that patients with a higher level of knowledge are more adherent to their medications and that better understanding of socio-demographic factors has a clear influence on the level of knowledge and adherence to medications and thus contributes to the development of guidelines for treatment and may consequently lead to favourable clinical outcomes and savings of health care costs.
TET1 regulates gene expression by demethylating their regulatory sequences through the conversion of 5-methylcytosine to 5-hyroxymethylcytosine. TET1 plays important roles in tissue homeostasis. In breast cancer, TET1 was shown to play controversial roles. Moreover, TET1 has at least two isoforms (long and short) that have distinct expression pattern and apparently different functions in tissue development and disease including breast cancer. We hypothesized that TET1 isoforms have different expression patterns, localization and regulation in different types of breast cancer. To prove our hypothesis, we studied the expression of TET1 isoforms in basal and luminal breast cancer cell lines, as well as in basal and luminal breast cancer animal models. We also studied the effect of different hormones on the expression of the two isoforms. Moreover, we assessed the distribution of the isoforms between the cytoplasm and nucleus. Finally, we overexpressed the full length in a breast cancer cell line and tested its effect on cancer cell behavior. In this study, we demonstrate that while Estrogen and GnRH downregulate the expression of long TET1, they lead to upregulation of short TET1 expression. In addition, we uncovered that luminal cells show higher expression level of the long isoform. We also show that while all TET1 isoforms are almost depleted in a basal breast cancer animal model, the expression of the short isoform is induced in luminal breast cancer model. The short form is expressed mainly in the cytoplasm while the long isoform is expressed mainly in the nucleus. Finally, we show that long TET1 overexpression suppresses cell oncogenic phenotypes. In conclusion, our data suggest that TET1 isoforms have distinct expression pattern, localization and regulation in breast cancer and that long TET1 suppresses oncogenic phenotypes, and that further studies are necessary to elucidate the functional roles of different TET1 isoforms in breast cancer.
Protein-protein interactions are key factors in executing protein function. These interactions are mediated through different protein domains or modules. An important domain found in many different types of proteins is WW domain. WW domain-containing proteins were shown to be involved in many human diseases including cancer. Some of these proteins function as either tumor suppressor genes or oncogenes, while others show dual identity. Some of these proteins act on their own and alter the function(s) of specific or multiple proteins implicated in cancer, others interact with their partners to compose WW domain modular pathway. In this review, we discuss the role of WW domain-containing proteins in breast tumorigenesis. We give examples of specific WW domain containing proteins that play roles in breast tumorigenesis and explain the mechanisms through which these proteins lead to breast cancer initiation and progression. We discuss also the possibility of using these proteins as biomarkers or therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.