Background: Parkinson’s disease is an aggressive and progressive neurodegenerative disorder that depletes dopamine (DA) in the central nervous system. Dopamine replacement therapy, mainly through actual dopamine and its original prodrug l-dopa (LD), faces many challenges such as poor blood brain barrier penetration and decreased response to therapy with time. Methods: The prodrugs described herein are ester, amide, dimeric amide, carrier-mediated, peptide transport-mediated, cyclic, chemical delivery systems and enzyme-models prodrugs designed and made by chemical means, and their bioavailability was studied in animals. Results: A promising ester prodrug for intranasal delivery has been developed. LD methyl ester is currently in Phase III clinical trials. A series of amide prodrugs were synthesized with better stability than ester prodrugs. Both amide and dimeric amide prodrugs offer enhanced blood brain barrier (BBB) penetration and better pharmacokinetics. Attaching LD to sugars has been used to exploit glucose transport mechanisms into the brain. Conclusions: Till now, no DA prodrug has reached the pharmaceutical market, nevertheless, the future of utilizing prodrugs for the treatment of PD seems to be bright. For instance, LD ester prodrugs have demonstrated an adequate intranasal delivery of LD, thus enabling the absorption of therapeutic agents to the brain. Most of the amide, cyclic, peptidyl or chemical delivery systems of DA prodrugs demonstrated enhanced pharmacokinetic properties.
Background: The design and development of prodrugs is the most common and effective strategy to overcome pharmacokinetic and pharmacodynamic drawbacks of active drugs. A respected number of prodrugs have been reached the drugs market throughout history and the recent years have witnessed a significant increase in the use of prodrugs as a replacement of their parent drugs for an efficient treatment of various ailment. Methods: A Scan conducted to find recent approved prodrugs and prodrugs in development. Results: Selected prodrugs were reported and categorized in accordance to their target systems. Conclusions: the prodrug approach has shown many successes and still remains a viable and effective approach to deliver new active agents. This conclusion is supported by the recent approved prodrugs and the scan of clinical trials conducted between 2013–2018.
Background: The blood brain barrier (BBB) is a dynamic and functional structure which poses a vast challenge in the development of drugs acting on the central nervous system (CNS). While most substances are denied BBB crossing, selective penetration of substances mainly occurs through diffusion, carrier mediated transport, or receptor mediated transcytosis. Methods: Strategies in enhancing BBB penetration have been reviewed and summarized in accordance with their type of formulation. Highlights in monoclonal antibodies, peptide-vectors, nanoparticles, and simple prodrugs were included. Conclusion: Nanoparticles and simple prodrugs, for example, can be used for efficient BBB penetration through inhibition of efflux mechanisms, however, monoclonal antibodies are the most promising strategy in BBB penetration. Close follow-up of future development in this area should confirm our expectation.
Background: Poor pharmacokinetic profiles and resistance are the main two drawbacks from which currently used antiviral agents suffer, thus make them excellent targets for research, especially in the presence of viral pandemics such as HIV and hepatitis C. Methods: The strategies employed in the studies covered in this review were sorted by the type of drug synthesized into ester prodrugs, targeted delivery prodrugs, macromolecular prodrugs, other nucleoside conjugates, and non-nucleoside drugs. Results: Utilizing the ester prodrug approach a novel isopropyl ester prodrug was found to be potent HIV integrase inhibitor. Further, employing the targeted delivery prodrug zanamivir and valine ester prodrug was made and shown a sole delivery of zanamivir. Additionally, VivaGel, a dendrimer macromolecular prodrug, was found to be very efficient and is now undergoing clinical trials. Conclusions: Of all the strategies employed (ester, targeted delivery, macromolecular, protides and nucleoside analogues, and non-nucleoside analogues prodrugs), the most promising are nucleoside analogues and macromolecular prodrugs. The macromolecular prodrug VivaGel works by two mechanisms: envelope mediated and receptor mediated disruption. Nucleotide analogues have witnessed productive era in the recent past few years. The era of non-interferon based treatment of hepatitis (through direct inhibitors of NS5A) has dawned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.