BackgroundBangladesh lies in the global thalassemia belt, which has a defined mutational hot-spot in the beta-globin gene. The high carrier frequencies of beta-thalassemia trait and hemoglobin E-trait in Bangladesh necessitate a reliable DNA-based carrier screening approach that could supplement the use of hematological and electrophoretic indices to overcome the barriers of carrier screening. With this view in mind, the study aimed to establish a high resolution melting (HRM) curve-based rapid and reliable mutation screening method targeting the mutational hot-spot of South Asian and Southeast Asian countries that encompasses exon-1 (c.1 - c.92), intron-1 (c.92 + 1 - c.92 + 130) and a portion of exon-2 (c.93 - c.217) of the HBB gene which harbors more than 95% of mutant alleles responsible for beta-thalassemia in Bangladesh.ResultsOur HRM approach could successfully differentiate ten beta-globin gene mutations, namely c.79G > A, c.92 + 5G > C, c.126_129delCTTT, c.27_28insG, c.46delT, c.47G > A, c.92G > C, c.92 + 130G > C, c.126delC and c.135delC in heterozygous states from the wild type alleles, implying the significance of the approach for carrier screening as the first three of these mutations account for ~85% of total mutant alleles in Bangladesh. Moreover, different combinations of compound heterozygous mutations were found to generate melt curves that were distinct from the wild type alleles and from one another. Based on the findings, sixteen reference samples were run in parallel to 41 unknown specimens to perform direct genotyping of the beta-thalassemia specimens using HRM. The HRM-based genotyping of the unknown specimens showed 100% consistency with the sequencing result.ConclusionsTargeting the mutational hot-spot, the HRM approach could be successfully applied for screening of beta-thalassemia carriers in Bangladesh as well as in other countries of South Asia and Southeast Asia. The approach could be a useful supplement of hematological and electrophortic indices in order to avoid false positive and false negative results.Electronic supplementary materialThe online version of this article (10.1186/s12863-017-0594-3) contains supplementary material, which is available to authorized users.
Background Gut microbes play a crucial role in the maintenance of human health. Components in the diet of the host affect their metabolism and diversity. Here, we investigated the influences of three commonly used non-caloric artificial sweeteners-aspartame, acesulfame K and sucralose-on the growth and metabolism of an omnipresent gut microbe Escherichia c oli K-12. Methods : Growth of E. coli in the presence of aspartame, acesulfame K and sucralose in media was assessed and the influences of these artificial sweeteners on metabolism were investigated by relative expression analysis of genes encoding the rate limiting steps of important metabolic pathways as well as their global metabolomic profiles. Results: As a whole, E. coli growth was inhibited by aspartame and induced by acesulfame potassium, while the effect of sucralose on growth was less prominent. Although the expressions of multiple key enzymes that regulate important metabolic pathways were significantly altered by all three sweeteners, acesulfame K caused the most notable changes in this regard. In multivariate analysis with the metabolite profiles, the sucralose-treated cells clustered the closest to the untreated cells, while the acesulfame potassium treated cells were the most distant. These sweeteners affect multiple metabolic pathways in E. coli , which include propanoate, phosphonate, phosphinate and fatty acid metabolism, pentose phosphate pathway, and biosynthesis of several amino acids including lysine and the aromatic amino acids. Similar to the gene expression pattern, acesulfame potassium treated E. coli showed the largest deviation in their metabolite profiles compared to the untreated cells.
Intracellular chloride concentration ([Cl−]i) in pancreatic β-cells is kept above electrochemical equilibrium due to the predominant functional presence of Cl− loaders such as the Na+K+2Cl− co-transporter 1 (Slc12a2) over Cl−extruders of unidentified nature. Using molecular cloning, RT-PCR, Western blotting, immunolocalization and in vitro functional assays, we establish that the “neuron-specific” K+Cl− co-transporter 2 (KCC2, Slc12a5) is expressed in several endocrine cells of the pancreatic islet, including glucagon secreting α-cells, but particularly in insulin-secreting β-cells, where we provide evidence for its role in the insulin secretory response. Three KCC2 splice variants were identified: the formerly described KCC2a and KCC2b along with a novel one lacking exon 25 (KCC2a-S25). This new variant is undetectable in brain or spinal cord, the only and most abundant known sources of KCC2. Inhibition of KCC2 activity in clonal MIN6 β-cells increases basal and glucose-stimulated insulin secretion and Ca2+ uptake in the presence of glibenclamide, an inhibitor of the ATP-dependent potassium (KATP)-channels, thus suggesting a possible mechanism underlying KCC2-dependent insulin release. We propose that the long-time considered “neuron-specific” KCC2 co-transporter is expressed in pancreatic islet β-cells where it modulates Ca2+-dependent insulin secretion.
Interethnic variability in drug response arises from genetic differences associated with drug metabolism, action and transport. These genetic variations can affect drug efficacy as well as cause adverse drug reactions (ADRs). We retrieved drug-response related single nucleotide polymorphism (SNP) associated data from databases and analyzed to elucidate population specific distribution of 159 drug-response related SNPs in twenty six populations belonging to five super-populations (African, Admixed Americans, East Asian, European and South Asian). Significant interpopulation differences exist in the minor (variant) allele frequencies (MAFs), linkage disequilibrium (LD) and haplotype distributions among these populations. 65 of the drug-response related alleles, which are considered as minor (variant) in global population, are present as the major alleles (frequency �0.5) in at least one or more populations. Populations that belong to the same super-population have similar distribution pattern for majority of the variant alleles. These drug response related variant allele frequencies and their pairwise LD measure (r 2) can clearly distinguish the populations in a way that correspond to the known evolutionary history of human and current geographic distributions, while D' cannot. The data presented here may aid in identifying drugs that are more appropriate and/or require pharmacogenetic testing in these populations. Our findings emphasize on the importance of distinct, ethnicity-specific clinical guidelines, especially for the African populations, to avoid ADRs and ensure effective drug treatment.
Although thyroid dyshormonogenesis (TDH) accounts for 10-20% of congenital hypothyroidism (CH), the molecular etiology of TDH is unknown in Bangladesh. Thyroid peroxidase (TPO) is most frequently associated with TDH and the present study investigated the spectrum of TPO mutations in Bangladeshi patients and analyzed the effects of mutations on TPO protein structure through in silico approach. Sequencing-based analysis of TPO gene revealed four mutations in 36 diagnosed patients with TDH including three nonsynonymous mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, and one synonymous mutation p.Pro715Pro. Homology modelling-based analysis of predicted structures of MPO-like domain (TPO142-738) and the full-length TPO protein (TPO1-933) revealed differences between mutant and wild type structures. Molecular docking studies were performed between predicted structures and heme. TPO1-933 predicted structure showed more reliable results in terms of interactions with the heme prosthetic group as the binding energies were -11.5 kcal/mol, -3.2 kcal/mol, -11.5 kcal/mol, and -7.9 kcal/mol for WT, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, respectively, implying that p.Ala373Ser and p.Thr725Pro mutations were more damaging than p.Ser398Thr. However, for the TPO142-738 predicted structures, the binding energies were -11.9 kcal/mol, -10.8 kcal/mol, -2.5 kcal/mol, and -5.3 kcal/mol for the wild type protein, mutant proteins with p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro substitutions, respectively. However, when the interactions between the crucial residues including residues His239, Arg396, Glu399, and His494 of TPO protein and heme were taken into consideration using both TPO1-933 and TPO142-738 predicted structures, it appeared that p.Ala373Ser and p.Thr725Pro could affect the interactions more severely than the p.Ser398Thr. Validation of the molecular docking results was performed by computer simulation in terms of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulation. In conclusion, the substitutions mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, had been involved in Bangladeshi patients with TDH and molecular docking-based study revealed that these mutations had damaging effect on the TPO protein activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.