Objective-Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease.Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR Ϫ/Ϫ ) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results-LDLRϪ/Ϫ mice were fed chow, high-fat, high-carbohydrate (diabetogenic) diets without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers, and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation, and local inflammation were observed in intraabdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions-Obesity-induced
Background-Myeloperoxidase (MPO) colocalizes with macrophages in the human artery wall, and its characteristic oxidation products have been detected in atherosclerotic lesions. Thus, oxidants produced by the enzyme might promote atherosclerosis. However, macrophages in mouse atherosclerotic tissue do not express MPO. Therefore, mice are an inappropriate model for testing the role of MPO in vascular disease. To overcome this problem, we generated and studied transgenic (Tg) mice that contained the human MPO gene. Methods and Results-We produced human MPO-Tg mice with use of a Visna virus promoter. To confine MPO expression to macrophages, we lethally irradiated LDL receptor-deficient mice and repopulated their bone marrow with cells from wild-type mice or MPO-Tg mice. Despite having similarly high levels of cholesterol after maintenance on a high-fat, high-cholesterol diet, the MPO-Tg animals developed a 2-fold greater atherosclerotic area in the aorta than did mice transplanted with wild-type bone marrow (Pϭ0.00003). Conclusions-Our
Background-Vascular inflammation and lipid deposition are prominent features of atherosclerotic lesion formation. We have shown previously that the dithiol compound ␣-lipoic acid (LA) exerts antiinflammatory effects by inhibiting tumor necrosis factor-␣-and lipopolysaccharide-induced endothelial and monocyte activation in vitro and lipopolysaccharide-induced acute inflammatory responses in vivo. Here, we investigated whether LA inhibits atherosclerosis in apolipoprotein E-deficient (apoE Ϫ/Ϫ ) and apoE/low-density lipoprotein receptor-deficient mice, 2 well-established animal models of human atherosclerosis. Methods and Results-Four-week-old female apoEϪ/Ϫ mice (nϭ20 per group) or apoE/low-density lipoprotein receptor-deficient mice (nϭ21 per group) were fed for 10 weeks a Western-type chow diet containing 15% fat and 0.125% cholesterol without or with 0.2% (wt/wt) R,S-LA or a normal chow diet containing 4% fat without or with 0.2% (wt/wt) R-LA, respectively. Supplementation with LA significantly reduced atherosclerotic lesion formation in the aortic sinus of both mouse models by Ϸ20% and in the aortic arch and thoracic aorta of apoE Ϫ/Ϫ and apoE/low-density lipoprotein receptor-deficient mice by Ϸ55% and 40%, respectively. This strong antiatherogenic effect of LA was associated with almost 40% less body weight gain and lower serum and very low-density lipoprotein levels of triglycerides but not cholesterol. In addition, LA supplementation reduced aortic expression of adhesion molecules and proinflammatory cytokines and aortic macrophage accumulation. These antiinflammatory effects of LA were more pronounced in the aortic arch and the thoracic aorta than in the aortic sinus, reflecting the corresponding reductions in atherosclerosis. Conclusions-Our study shows that dietary LA supplementation inhibits atherosclerotic lesion formation in 2 mouse models of human atherosclerosis, an inhibition that appears to be due to the "antiobesity," antihypertriglyceridemic, and antiinflammatory effects of LA. LA may be a useful adjunct in the prevention and treatment of atherosclerotic vascular diseases. (Circulation. 2008;117:421-428.)
TNF-alpha signals through two receptors, TNFR1 and TNFR2. Our goals were: 1) determine the role of TNFRs in obesity and metabolic disease and 2) investigate whether TNFRs contribute to the link between obesity and adipose tissue macrophage infiltration and polarization. R1(-/-)R2(-/-) (RKO) and wild-type (WT) mice were fed standard chow or a high-fat/high-sucrose diet (HFHS) over 14 wk. Body composition, food intake, and energy expenditure were measured. Oral glucose tolerance and insulin sensitivity tests assessed glucose homeostasis. Adipose tissue and systemic inflammatory status were evaluated by quantifying plasma adipokine levels and macrophage-specific gene expression in fat. RKO mice were heavier (10%) and fatter (18%) than WT controls at 4 wk of age and were 26% heavier and 50% fatter than WT after 14 wk of HFHS diet feeding. Age- and diet-adjusted 24-h oxygen consumption, activity, and respiratory exchange ratio were significantly reduced in RKO mice. Obese RKO mice were markedly insulin resistant, suggesting that intact TNFR signaling is not required for the effect of obesity to impair glucose metabolism. Adipose tissue from HFHS-fed RKO mice exhibited increased macrophage infiltration, but compared with WT mice, macrophage phenotypic markers featured a predominance of antiinflammatory M2 over proinflammatory M1 cells. TNFRs play a physiological role to limit body weight and adiposity by modestly increasing metabolic rate and fatty acid oxidation, and they are required for obesity-induced activation of adipose tissue macrophages. Despite these effects, TNFRs are not required for obesity-induced insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.