Pattern synthesis is a significant research focus in smart antennas due to its extensive use in several radar and communication systems. To improve the optimization performance of pattern synthesis of uniform and sparse linear antenna array, this paper presents an optimization method for solving the antenna array synthesis problem using the Mayfly Algorithm (MA). MA is a new heuristic algorithm inspired by the flight behavior as well as the mating process of mayflies, it has a unique velocity update system with great convergence. In this work, the MA was applied to linear antenna arrays (LAA) for optimal pattern synthesis in the following ways: by optimizing the antenna current amplitudes while maintaining uniform spacing and by optimizing the antenna positions while assuming a uniform excitation. Constraints of inter-element spacing and aperture length are imposed in the synthesis of sparse LAA. Sidelobe level (SLL) suppression with the placement of nulls in the specified directions is also implemented. The results gotten from this novel algorithm are validated by benchmarking with results obtained using other intelligent algorithms. In the synthesis of uniform 20-element LAA with nulls, MA achieved an SLL of -31.27 dB and the deepest null of -101.60 dB. Also, for sparse 20-element LAA, an SLL of -18.85 dB was attained alongside the deepest null of -87.37 dB. MA obtained an SLL of -35.73 dB and -23.68 dB for the synthesis of uniform and sparse 32-element LAA respectively. Finally, electromagnetism simulations are conducted using ANSYS Electromagnetics (HFSS) software, to evaluate the performance of MA for the beam pattern optimizations, taking into consideration the mutual coupling effects. The results prove that optimization of LAA using MA provides considerable enhancements in peak SLL suppression, null control, and convergence rate with respect to the uniform array and the synthesis obtained from other existing optimization techniques.
Metaheuristics are incapable of analyzing robot problems without being enhanced, modified, or hybridized. Enhanced metaheuristics reported in other works of literature are problem-specific and often not suitable for analyzing other robot configurations. The parameters of standard particle swarm optimization (SPSO) were shown to be incapable of resolving robot optimization problems. A novel algorithm for robot kinematic analysis with enhanced parameters is hereby presented. The algorithm is capable of analyzing all the known robot configurations. This was achieved by studying the convergence behavior of PSO under various robot configurations, with a view of determining new PSO parameters for robot analysis and a suitable adaptive technique for parameter identification. Most of the parameters tested stagnated in the vicinity of strong local minimizers. A few parameters escaped stagnation but were incapable of finding the global minimum solution, this is undesirable because accuracy is an important criterion for robot analysis and control. The algorithm was trained to identify stagnating solutions. The algorithm proposed herein was found to compete favorably with other algorithms reported in the literature. There is a great potential of further expanding the findings herein for dynamic parameter identification.
Nowadays, wireless energy transfer (WET) is a new strategy that has the potential to essentially resolve energy and lifespan issues in a wireless sensor network (WSN). We investigate the process of a wireless energy transfer-based wireless sensor network via a wireless mobile charging device (WMCD) and develop a periodic charging scheme to keep the network operative. This paper aims to reduce the overall system energy consumption and total distance traveled, and increase the ratio of charging device vacation time. We propose an energy renewable management system based on particle swarm optimization (ERMS-PSO) to achieve energy savings based on an investigation of the total energy consumption. In this new strategy, we introduce two sets of energies called emin (minimum energy level) and ethresh (threshold energy level). When the first node reaches the emin, it will inform the base station, which will calculate all nodes that fall under ethresh and send a WMCD to charge them in one cycle. These settled energy levels help to manage when a sensor node needs to be charged before reaching the general minimum energy in the node and will help the network to operate for a long time without failing. In contrast to previous schemes in which the wireless mobile charging device visited and charged all nodes for each cycle, in our strategy, the charging device should visit only a few nodes that use more energy than others. Mathematical outcomes demonstrate that our proposed strategy can considerably reduce the total energy consumption and distance traveled by the charging device and increase its vacation time ratio while retaining performance, and ERMS-PSO is more practical for real-world networks because it can keep the network operational with less complexity than other schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.