Face recognition (FR) methods report significant performance by adopting the convolutional neural network (CNN) based learning methods. Although CNNs are mostly trained by optimizing the softmax loss, the recent trend shows an improvement of accuracy with different strategies, such as task-specific CNN learning with different loss functions, fine-tuning on target dataset, metric learning and concatenating features from multiple CNNs. Incorporating these tasks obviously requires additional efforts. Moreover, it demotivates the discovery of efficient CNN models for FR which are trained only with identity labels. We focus on this fact and propose an easily trainable and single CNN based FR method. Our CNN model exploits the residual learning framework. Additionally, it uses normalized features to compute the loss. Our extensive experiments show excellent generalization on different datasets. We obtain very competitive and state-of-the-art results on the LFW, IJB-A, YouTube faces and CACD datasets.
International audienceModel-based clustering is a method that clusters data with an assumption of a statistical model structure. In this paper, we propose a novel model-based hierarchical clustering method for a finite statistical mixture model based on the Fisher distribution. The main foci of the proposed method are: (a) provide efficient solution to estimate the parameters of a Fisher mixture model (FMM); (b) generate a hierarchy of FMMs and (c) select the optimal model. To this aim, we develop a Bregman soft clustering method for FMM. Our model estimation strategy exploits Bregman divergence and hierarchical agglomerative clustering. Whereas, our model selection strategy comprises a parsimony-based approach and an evaluation graph-based approach. We empirically validate our proposed method by applying it on simulated data. Next, we apply the method on real data to perform depth image analysis. We demonstrate that the proposed clustering method can be used as a potential tool for unsupervised depth image analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.