Summary In this study, a three‐dimensional numerical model is developed to investigate the thermal and electrical characteristics of 18 650 lithium‐ion battery cells that are used in the solar racing car of Dokuz Eylül University, i.e., SOLARIS. The Newman, Tiedemann, Gu, and Kim (NTGK) battery model of ANSYS Fluent software is implemented to resolve the coupled multiphysics problem. In the analysis, only the discharging period of the battery is considered. Before going through parametric studies under variable weather conditions, time‐wise variations of the cell temperature and the battery voltage are evaluated both experimentally and numerically under two different ambient conditions of 0°C and 25°C. Comparative results revealed that reasonable predictions are achieved with the current battery model, and the difference between the predicted battery surface temperature and experimental data is less than 1°C. Following the model validation, the battery performance is numerically examined by applying the battery model to a real race procedure of SOLARIS. Phase change materials (PCMs) with different amounts and melting temperatures are implemented around the batteries, and transient analyses are conducted under real weather conditions. The current study aims to keep the battery temperature of a solar racing car above a certain limit to prevent the overcooling and maintain higher charging capacity. Implementation of PCM with a melting temperature of 26°C yields 3.15% of capacity increment, and such a performance improvement corresponds to 15.51 Wh of extra energy that can be extracted from an individual battery.
The inverse Magnus effect is a special physical state that can only be achieved within certain ranges of the Reynolds number and the spin ratio. Numerical studies and particularly, special experimental setups are required for its investigation. In this study, an experimental design idea that will enable the mentioned physical phenomenon to be analyzed on a specific geometry is presented. By compiling similar studies in the past years, the innovations made are emphasized. All the elements on the assembly whose design has been completed are detailed and its advantages and disadvantages are mentioned. It is predicted that the system with the partially rotating cylinders planned to be established in the near future will be a guide in numerical studies and will create important outputs in the use of the Magnus effect on airfoils in aviation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.