Electric vehicles play an integral role in eliminating pollution related to transportation, especially if the electricity is generated via renewable sources. However, storing electricity onboard requires many battery cells. If the temperature of the cells is not strictly regulated, their capacity decreases in time, and they may burn or explode due to thermal runaway. Battery thermal management systems emerged for safe operations by keeping the battery cell temperatures under limit values. However, the current solutions do not yield uniform temperature distribution for all the cells in a pack. Here, we document that constant temperature distribution can be achieved with uniform coolant distribution to the channels located between batteries. The design process of the developed battery pack begins with a design used in current packs. Later, how the shape of the distributor channel affects flow uniformity is documented. Then, the design complexity was increased to satisfy the flow uniformity condition, which is essential for temperature uniformity. The design was altered based on a constructal design methodology with an iterative exhaustive search approach. The uncovered constructal design yields a uniform coolant distribution with a maximum of 0.81% flow rate deviation along channels. The developed design is palpable and easy to manufacture relative to the tapered manifold designs. The results also document that the peak temperature difference between the cells decreases from a maximum of 12 K to 0.4 K. Furthermore, homogenous distribution of air is one of the limiting factors of the development of metal–air batteries. This paper also documents how air can be distributed uniformly to metal–air battery cells in a battery pack.
Summary
In this study, a three‐dimensional numerical model is developed to investigate the thermal and electrical characteristics of 18 650 lithium‐ion battery cells that are used in the solar racing car of Dokuz Eylül University, i.e., SOLARIS. The Newman, Tiedemann, Gu, and Kim (NTGK) battery model of ANSYS Fluent software is implemented to resolve the coupled multiphysics problem. In the analysis, only the discharging period of the battery is considered. Before going through parametric studies under variable weather conditions, time‐wise variations of the cell temperature and the battery voltage are evaluated both experimentally and numerically under two different ambient conditions of 0°C and 25°C. Comparative results revealed that reasonable predictions are achieved with the current battery model, and the difference between the predicted battery surface temperature and experimental data is less than 1°C. Following the model validation, the battery performance is numerically examined by applying the battery model to a real race procedure of SOLARIS. Phase change materials (PCMs) with different amounts and melting temperatures are implemented around the batteries, and transient analyses are conducted under real weather conditions. The current study aims to keep the battery temperature of a solar racing car above a certain limit to prevent the overcooling and maintain higher charging capacity. Implementation of PCM with a melting temperature of 26°C yields 3.15% of capacity increment, and such a performance improvement corresponds to 15.51 Wh of extra energy that can be extracted from an individual battery.
Catastrophic effects of global warming and environmental pollution are becoming more sensible each day, and reduction in fossil fuel consumption is an urgent need. Thus, electric vehicles powered by sustainable energy sources are becoming a major interest. However, there are some challenges such as safety, limited range, long charging times and battery life which are inhibitory to the adaptation of them. One of the biggest reasons for these challenges is the relationship between battery degradation and temperature which can be eliminated if batteries can be kept at the optimum temperature range. Here, the effects of three distinct (natural convection, forced convection and tab cooling) methodology was used for thermal management of lithium-ion cells are experimentally compared at both the cell and module levels. The tests at a discharge rate of 3C were carried out at ambient temperatures of 24 °C and 29 °C, with six serial 7.5Ah Kokam pouch cells (1P6S). The cell-level test results show that the tab cooling yields 32.5% better thermal uniformity in comparison to the other techniques. Tab cooling yields better temperature uniformity with/out air convection as the hot spots occurring near the tabs is eliminated. For module level, the forced air convection method stands out as the best option with 4.3% temperature deviation between cells and maximum cell temperature of 39 °C. Overall, the results show that a hybrid approach with tab cooling would be beneficial in terms of temperature homogeneity especially in high capacity electric vehicle battery cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.