Latent variable models are a popular class of models in statistics. Combined with neural networks to improve their expressivity, the resulting deep latent variable models have also found numerous applications in machine learning. A drawback of these models is that their likelihood function is intractable so approximations have to be carried out to perform inference. A standard approach consists of maximizing instead an evidence lower bound (ELBO) obtained based on a variational approximation of the posterior distribution of the latent variables. The standard ELBO can, however, be a very loose bound if the variational family is not rich enough. A generic strategy to tighten such bounds is to rely on an unbiased low-variance Monte Carlo estimate of the evidence. We review here some recent importance sampling, Markov chain Monte Carlo and sequential Monte Carlo strategies that have been proposed to achieve this. This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.
Markov Chain Monte Carlo (MCMC) is a class of algorithms to sample complex and highdimensional probability distributions. The Metropolis-Hastings (MH) algorithm, the workhorse of MCMC, provides a simple recipe to construct reversible Markov kernels. Reversibility is a tractable property which implies a less tractable but essential property here, invariance. Reversibility is however not necessarily desirable when considering performance. This has prompted recent interest in designing kernels breaking this property. At the same time, an active stream of research has focused on the design of novel versions of the MH kernel, some nonreversible, relying on the use of complex invertible deterministic transforms. While standard implementations of the MH kernel are well understood, aforementioned developments have not received the same systematic treatment to ensure their validity. This paper fills the gap by developing general tools to ensure that a class of nonreversible Markov kernels, possibly relying on complex transforms, has the desired invariance property and lead to convergent algorithms. This leads to a set of simple and practically verifiable conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.