Separation of sources consists of recovering a set of signals of which only instantaneous linear mixtures are observed. In many situations, no a priori information on the mixing matrix is available: The linear mixture should be "blindly" processed. This typically occurs in narrowband array processing applications when the array manifold is unknown or distorted. This paper introduces a new source separation technique exploiting the time coherence of the source signals. In contrast with other previously reported techniques, the proposed approach relies only on stationary second-order statistics that are based on a joint diagonalization of a set of covariance matrices. Asymptotic performance analysis of this method is carried out; some numerical simulations are provided to illustrate the effectiveness of the proposed method.
Voice conversion, as considered in this paper, is defined as modifying the speech signal of one speaker (source speaker) so that it sounds as if it had been pronounced by a different speaker (target speaker). Our contribution includes the design of a new methodology for representing the relationship between two sets of spectral envelopes. The proposed method is based on the use of a Gaussian mixture model of the source speaker spectral envelopes. The conversion itself is represented by a continuous parametric function which takes into account the probabilistic classification provided by the mixture model. The parameters of the conversion function are estimated by least squares optimization on the training data. This conversion method is implemented in the context of the HNM (harmonic + noise model) system, which allows high-quality modifications of speech signals. Compared to earlier methods based on vector quantization, the proposed conversion scheme results in a much better match between the converted envelopes and the target envelopes. Evaluation by objective tests and formal listening tests shows that the proposed transform greatly improves the quality and naturalness of the converted speech signals compared with previous proposed conversion methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.