In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.
Subjective tinnitus is generally assumed to be a consequence of hearing loss. In animal studies it has been demonstrated that acoustic trauma induced cochlear damage can lead to behavioral signs of tinnitus. In addition it was shown that noise trauma may lead to deafferentation of cochlear inner hair cells (IHC) even in the absence of elevated hearing thresholds, and it seems conceivable that such hidden hearing loss may be sufficient to cause tinnitus. Numerous studies have indicated that tinnitus is correlated with pathologically increased spontaneous firing rates and hyperactivity of neurons along the auditory pathway. It has been proposed that this hyperactivity is the consequence of a mechanism aiming to compensate for reduced input to the auditory system by increasing central neuronal gain, a mechanism referred to as homeostatic plasticity (HP), thereby maintaining mean firing rates over longer timescales for stabilization of neuronal processing. Here we propose an alternative, new interpretation of tinnitus-related development of neuronal hyperactivity in terms of information theory. In particular, we suggest that stochastic resonance (SR) plays a key role in both short- and long-term plasticity within the auditory system and that SR is the primary cause of neuronal hyperactivity and tinnitus. We argue that following hearing loss, SR serves to lift signals above the increased neuronal thresholds, thereby partly compensating for the hearing loss. In our model, the increased amount of internal noise—which is crucial for SR to work—corresponds to neuronal hyperactivity which subsequently causes neuronal plasticity along the auditory pathway and finally may lead to the development of a phantom percept, i.e., subjective tinnitus. We demonstrate the plausibility of our hypothesis using a computational model and provide exemplary findings in human patients that are consistent with that model. Finally we discuss the observed asymmetry in human tinnitus pitch distribution as a consequence of asymmetry of the distribution of auditory nerve type I fibers along the cochlea in the context of our model.
All sensors have a threshold, defined by the smallest signal amplitude that can be detected. The detection of sub-threshold signals, however, is possible by using the principle of stochastic resonance, where noise is added to the input signal so that it randomly exceeds the sensor threshold. The choice of an optimal noise level that maximizes the mutual information between sensor input and output, however, requires knowledge of the input signal, which is not available in most practical applications. Here we demonstrate that the autocorrelation of the sensor output alone is sufficient to find this optimal noise level. Furthermore, we demonstrate numerically and analytically the equivalence of the traditional mutual information approach and our autocorrelation approach for a range of model systems. We furthermore show how the level of added noise can be continuously adapted even to highly variable, unknown input signals via a feedback loop. Finally, we present evidence that adaptive stochastic resonance based on the autocorrelation of the sensor output may be a fundamental principle in neuronal systems.
Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sustained stimulus is encoded that is perceived for minutes or even longer, when discharge rates have decayed back to spontaneous levels. Using a newly developed statistical approach (multidimensional cluster statistics (MCS)) that allows for a comparison of clusters of data points in n-dimensional space, we here demonstrate that the information about long-lasting stimuli is encoded in the ongoing spatiotemporal activity patterns in sensory cortex. We successfully apply MCS to multichannel local field potential recordings in different rodent models and sensory modalities, as well as to human MEG and EEG data, demonstrating its universal applicability. MCS thus indicates novel ways for the development of powerful read-out algorithms of spatiotemporal brain activity that may be implemented in innovative brain-computer interfaces (BCI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.