In this paper, we present a novel feature detection approach designed for mobile devices, showing optimized solutions for both detection and description. It is based on FAST (Features from Accelerated Segment Test) and named 3D FAST. Being robust, scale-invariant and easy to compute, it is a candidate for augmented reality (AR) applications running on low performance platforms. Using simple calculations and machine learning, FAST is a feature detection algorithm known to be efficient but not very robust in addition to its lack of scale information. Our approach relies on gradient images calculated for different scale levels on which a modified9 FAST algorithm operates to obtain the values of the corner response function. We combine the detection with an adapted version of SURF (Speed Up Robust Features) descriptors, providing a system with all means to implement feature matching and object detection. Experimental evaluation on a Symbian OS device using a standard image set and comparison with SURF using Hessian matrix-based detector is included in this paper, showing improvements in speed (compared to SURF) and robustness (compared to FAST)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.