The main problem from autonomous robot for navigation is how the robot able to recognize the surrounding environment and know this position. These problems make this research weakness and become a challenge for further research. Therefore, this research focuses on designing a mapping and positioning system using Simultaneous Localization and Mapping (SLAM) method which is implemented on an omnidirectional robot using a LiDAR sensor. The proposes of this research are mapping system using the google cartographer algorithm combined with the eulerdometry method, eulerdometry is a combination of odometry and euler orientation from IMU sensor, while the positioning system uses the Adaptive Monte Carlo Localization (AMCL) method combined with the eulerdometry method. Testing is carried out by testing the system five times from each system, besides that testing is also carried out at each stage, testing on each sensor used such as the IMU and LiDAR sensors, and testing on system integration, including the eulerdometry method, mapping system and positioning system. The results on the mapping system showed optimal results, even though there was still noise in the results of the maps created, while the positioning system test got an average RMSE value from each map created of 278.55 mm on the x-axis, 207.37 mm on the y-axis, and 4.28o on the orientation robot.
Permasalahan utama dari autonomous robot atau robot otonom untuk bernavigasi adalah bagaimana robot dapat mengenali lingkungan sekitar. Oleh karena itu, penelitian ini berfokus pada perancangan sistem mapping dan lokalisasi menggunakan metode Simultaneous Localization And Mapping (SLAM) yang diimplementasikan pada mobile robot jenis omnidirectional atau holonomic menggunakan sensor LiDAR. Penelitian ini mengusulkan sistem mapping dan lokalisasi untuk mengenali lingkungan sekitar dengan membuat peta lingkungan menggunakan algoritma google cartographer yang dikombinasikan dengan metode eulerdometry yaitu kombinasi antara odometry dengan data euler orientation dari sensor IMU. Pengujian dilakukan dengan menguji setiap sensor seperti IMU dan LiDAR, dan menguji instegrasi sistem termasuk metode eulerdometry dan sistem mapping dan lokalisasi dengan algoritma google cartographer yang dikombinasikan dengan metode eulerdometry. Hasil pengujian dari sistem mapping dan lokalisasi menunjukkan hasil yang optimal dan mampu mengenali kondisi lingkungan sekitar robot meskipun masih terdapat noise pada peta yang sudah dibuat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.