Background Bovine pericardium collagen membrane (BPCM) had been widely used in guided bone regeneration (GBR) whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM) was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat's subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.
Background: Ubiquinone is one of food supplement which is known have positive effect in wound healing. However the study to evaluate the possible role of ubiquinone in bone healing in autogenous bone grafting after mandibular resection has not been studied. An in vitro study is required to evaluate whether ubiquinone or coenzyme Q-10 (CoQ10) has a positive effect on osteogenesis. Viability test of CoQ10 and a model of osteogenic-induced and hypoxic-condition mesenchymal stem cell culture were established to support the study. Purpose: The study was made to evaluate the role of ubiquinone in osteogenesis by analyzing the toxicity effect and the optimal dose of CoQ10 that might interfere in bone marrow derived mesenchymal stem cell (BM-MSC) that was dose in cell culture medium. The BM-MSC culture under hypoxia condition were also observed. Method: The toxicity and the optimum viability concentration of ubiquinone were observed using MTT assay. The osteogenic differentiation under hypoxic condition was done on BM-MSC in osteogenic medium that composed of ascorbic acid, glycerolphosphate and dexamethasone in hypoxia chamber for 21 days. Osteogenic differentiation and cellular hypoxia features were tested with immunocytochemical staining using anti-Runx2 and anti-HIF1α monoclonal antibody, respectively. Result: the maximum density value of 1.826 was found in the group of ubiquinone concentration of 75μM/ml, increasing of in concentration of ubiquinone resulted with the decrease of optical density of CoQ10. Statistic analysis using Anova showed with no significant difference among groups with various concentration. Immunocytochemical staining showed that Runx2 expression in 3% hypoxia group (p<0.05). Conclusion: Ubiquinone was found non toxic in its optimum dose of 75μM/ml, showed by optimum result in the expression of Runx2 and HIF1α further study is necessary to evaluate the angiogenic and osteogenic effect of ubiquione.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.