This paper presents the design and performance evaluation of an inexpensive testbed for network coding protocols composed of Raspberry Pis. First, we show the performance of random linear network coding primitives on the Raspberry Pi in terms of processing speed and energy consumption under a variety of configuration setups. Our measurements show that processing rates of up to 230 Mbps are possible with the Raspberry Pi. Also, the energy consumption per bit can be as small as 3 nJ/bit, which is several orders of magnitude smaller than the transmission/reception energy use. Surprisingly, overclocking the Raspberry Pi from 700 MHz to 1000 MHz not only produces an increase in processing speed of up to 68 % for large generation sizes, but also provides a reduction of 64 % in the processing energy per bit for most tested scenarios. Then, we show Raspberry Pi as an inexpensive, viable, and flexible platform to deploy large research networking testbeds for the evaluation of network coding protocols. We propose key parameters and representations to evaluate protocol performance in network nodes as well as validating the testbed's statistics using the case of a one-hop broadcast with random linear network coding, which is well understood in theory.
An important challenge for the implementation of network coding in IEEE 802.11-based wireless networks is to give additional priority for channel access to the relay stations responsible for coding. These relay stations are able to provide more information in a single transmission than those that forward single packets, hence improving throughput and energy efficiency. The Distributed Coordination Function (DCF) of the IEEE 802.11 standard is a contention-based Medium Access Control (MAC) protocol that provides an equal distribution of channel access opportunities for all competing stations. However, the relay station represents a congestion point and additional transmission slots should be assigned to it to increase the overall network performance. To address this issue we investigate a coding-aware MAC protocol, called Reverse Direction DCF (RD-DCF), which enables bidirectional communications between the relay station and another station with a single channel access invocation. This simple and backwards compatible mechanism allows the relay station to transmit a coded packet together with the acknowledgement immediately after receiving a data packet. The simulation results show a gain of up to 130% in terms of both throughput and energy efficiency for RD-DCF with network coding when compared to DCF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.