An increase in Rho kinase (ROCK) activity is implicated in chronic hypoxia-induced pulmonary hypertension. In the present study, we determined the role of ROCKs in cGMP-dependent protein kinase (PKG)-mediated pulmonary vasodilation of fetal lambs exposed to chronic hypoxia. Fourth generation pulmonary arteries were isolated from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days and from control ewes. In vessels constricted to endothelin-1, 8-bromoguanosine-cGMP (8-Br-cGMP) caused a smaller relaxation in chronically hypoxic (CH) vessels compared with controls. Rp-8-Br-PET-cGMPS, a PKG inhibitor, attenuated relaxation to 8-Br-cGMP in control vessels to a greater extent than in CH vessels. Y-27632, a ROCK inhibitor, significantly potentiated 8-Br-cGMP-induced relaxation of CH vessels and had only a minor effect in control vessels. The expression of PKG was increased but was not accompanied with an increase in the activity of the enzyme in CH vessels. The expression of type II ROCK and activity of ROCKs were increased in CH vessels. The phosphorylation of threonine (Thr)696 and Thr850 of the regulatory subunit MYPT1 of myosin light chain phosphatase was inhibited by 8-Br-cGMP to a lesser extent in CH vessels than in controls. The difference was eliminated by Y-27632. These results suggest that chronic hypoxia in utero attenuates PKG-mediated relaxation in pulmonary arteries, partly due to inhibition of PKG activity and partly due to enhanced ROCK activity. Increased ROCK activity may inhibit PKG action through increased phosphorylation of MYPT1 at Thr696 and Thr850.
Raj. Role of cGMP-dependent protein kinase in development of tolerance to nitric oxide in pulmonary veins of newborn lambs. Am J Physiol Lung Cell Mol Physiol 286: L786-L792, 2004. First published November 5, 2003 10.1152/ajplung.00314.2003.-Continuous exposure to nitrovasodilators and nitric oxide induces tolerance to their vasodilator effects in vascular smooth muscle. This study was done to determine the role of cGMP-dependent protein kinase (PKG) in the development of tolerance to nitric oxide. Isolated fourthgeneration pulmonary veins of newborn lambs were studied. Incubation of veins for 20 h with DETA NONOate (DETA NO; a stable nitric oxide donor) significantly reduced their relaxation response to the nitric oxide donor and to -phenyl-1,N 2 -etheno-8-bromo-cGMP (8-Br-PET-cGMP, a cell-permeable cGMP analog). Incubation with DETA NO significantly reduced PKG activity and protein and mRNA levels in the vessels. These effects were prevented by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase) and Rp-8-Br-PET-cGMPS (an inhibitor of PKG). A decrease in PKG protein and mRNA levels was also observed after continuous exposure to cGMP analogs. The PKG inhibitor abrogated these effects. The decrease in cGMP-mediated relaxation and in PKG activity caused by continuous exposure to DETA NO was not affected by KT-5720, an inhibitor of cAMP-dependent protein kinase. Prolonged exposure to 8-Br-cAMP (a cell-permeable cAMP analog) did not affect PKG protein level in the veins. These results suggest that continuous exposure to nitric oxide or cGMP downregulates PKG by a PKG-dependent mechanism. Such a negative feedback mechanism may contribute to the development of tolerance to nitric oxide in pulmonary veins of newborn lambs. guanosine 3Ј,5Ј-cyclic monophosphate; -phenyl-1,N 2 -etheno-8-bromo-guanosine 3Ј,5Ј-cyclic monophosphorothioate Rp isomer; KT-5720; vascular smooth muscle; relaxation; perinatal lungs CYCLIC GMP-DEPENDENT PROTEIN kinase (PKG) is a key enzyme involved in vasodilatation induced by endogenous and exogenous nitric oxide (4,6,7,8,13,17,18). Nitric oxide activates soluble guanylyl cyclase, resulting in increased intracellular cGMP content. cGMP has many actions, one of which is to stimulate PKG activity, which ultimately results in a reduction in intracellular Ca 2ϩ concentration and vasodilatation (17). Two types of PKG enzymes have been identified (type I and type II) in mammalian cells (6,17). In blood vessels, type I PKG is the predominant form (6,13,17,26). PKG type I has two isoforms (PKG-I␣ and PKG-I). So far, all studies seem to indicate that PKG type-I␣ enzyme is the main isoform involved in nitric oxide-mediated vasodilatation (5, 15, 33).In human mammary arteries, continuous nitroglycerin infusion induces nitrate tolerance, cross-tolerance to endotheliumderived nitric oxide, and a decrease in vasodilator-stimulated phosphoprotein serine-239 phosphorylation (an index of PKG activity; see Ref. 30). In rat and bovine aortic smooth muscle cells, continuous expo...
The roles of Rho kinase (ROCK) and cGMP-dependent protein kinase (PKG) in cGMP-mediated relaxation of fetal pulmonary veins exposed to chronic hypoxia (CH) were investigated. Fourth generation pulmonary veins were dissected from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days (CH) and from control ewes. After constriction with endothelin-1, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) caused a similar relaxation of both control and CH vessels. Rp-8-Br-PET-cGMPS (a PKG inhibitor) inhibited whereas Y-27632 (a ROCK inhibitor) augmented relaxation of control veins to 8-Br-cGMP. These effects were significantly diminished in CH veins. PKG protein expression and activity were greater whereas ROCK protein expression and activity were less in CH vessels compared with controls. Phosphorylation of threonine 696 (ROCK substrate) and serine 695 (PKG substrate) of the regulatory myosin phosphatase targeting subunit MYPT1 of myosin light chain (MLC) phosphatase was stimulated to a lesser extent in CH than in control veins by endothelin-1 (ROCK stimulant) and 8-Br-cGMP (PKG stimulant), respectively. The phosphorylation and dephosphorylation of MLC caused by endothelin-1 and 8-Br-cGMP, respectively, were less in CH veins than in controls. These results suggest that CH in utero upregulates PKG activity but attenuates PKG action in fetal pulmonary veins. These effects are offset by the diminished ROCK action on MYPT1 and MLC and thus lead to an unaltered response to cGMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.