Bottlenose dolphins (Tursiops truncatus) have a world‐wide distribution, and show morphotypic variation among regions. Distinctions between coastal and pelagic populations have been documented; however, regional patterns of differentiation had not been previously investigated in a wider geographic context. We analysed up to nine different populations from seven different areas of the world by mitochondrial DNA and microsatellite DNA markers, and found differentiation among all putative regional populations. Both mtDNA and microsatellite DNA data show significant differentiation, suggesting restricted gene flow for both males and females. Dolphins in coastal habitat showed less variability and were in most cases differentiated from a pelagic lineage, which could suggest local founder events in some cases. Two coastal populations recently classified as belonging to a new species, T. aduncus, were each highly differentiated from populations of the truncatus morphotype, and from each other, suggesting a possible third species represented by the South African aduncus type.
Bottlenose dolphins (Tursiops truncatus) are widely distributed and a high degree of morphometric and genetic differentiation has been found among both allopatric and parapatric populations. We analysed 145 samples along a contiguous distributional range from the Black Sea to the eastern North Atlantic for mitochondrial and nuclear genetic diversity, and found population structure with boundaries that coincided with transitions between habitat regions. These regions can be characterized by ocean floor topography, and oceanographic features such as surface salinity, productivity and temperature. At the extremes of this range there was evidence for the directional emigration of females. Bi-parentally inherited markers did not show this directional bias in migration, suggesting a different dispersal strategy for males and females at range margins. However, comparative assessment based on mitochondrial DNA and nuclear markers indicated that neither sex showed a strong bias for greater dispersal on average. These data imply a mechanism for the evolutionary structuring of populations based on local habitat dependence for both males and females.
A low level of genetic variation in mammalian populations where the census population size is relatively large has been attributed to various factors, such as a naturally small effective population size, historical bottlenecks and social behaviour. The killer whale (Orcinus orca) is an abundant, highly social species with reduced genetic variation. We find no consistent geographical pattern of global diversity and no mtDNA variation within some regional populations. The regional lack of variation is likely to be due to the strict matrilineal expansion of local populations. The worldwide pattern and paucity of diversity may indicate a historical bottleneck as an additional factor.
Understanding the evolution of diversity and the resulting systematics in marine systems is confounded by the lack of clear boundaries in oceanic habitats, especially for highly mobile species like marine mammals. Dolphin populations and sibling species often show differentiation between coastal and offshore habitats, similar to the pelagic/littoral or benthic differentiation seen for some species of fish. Here we test the hypothesis that lineages within the polytypic genus Tursiops track past changes in the environment reflecting ecological drivers of evolution facilitated by habitat release. We used a known recent time point for calibration (the opening of the Bosphorus) and whole mitochondrial genome (mitogenome) sequences for high phylogenetic resolution. The pattern of lineage formation suggested an origin in Australasia and several early divisions involving forms currently inhabiting coastal habitats. Radiation in pelagic environments was relatively recent, and was likely followed by a return to coastal habitat in some regions. The timing of some nodes defining different ecotypes within the genus clustered near the two most recent interglacial transitions. A signal for an increase in diversification was also seen for dates after the last glacial maximum. Together these data suggest the tracking of habitat preference during geographic expansions, followed by transition points reflecting habitat shifts, which were likely associated with periods of environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.