Despite the extensive use of photographic identification methods to investigate humpback whales in the North Pacific, few quantitative analyses have been conducted. We report on a comprehensive analysis of interchange in the North Pacific among three wintering regions (Mexico, Hawaii, and Japan) each with two to three subareas, and feeding areas that extended from southern California to the Aleutian Islands. Of the 6,413 identification photographs of humpback whales obtained by 16 independent research groups between 1990 and 1993 and examined for this study, 3,650 photographs were determined to be of suitable quality. A total of 1,241 matches was found by two independent matching teams, identifying 2,712 unique whales in the sample (seen one to five times). Site fidelity was greatest at feeding areas where there was a high rate of resightings in the same area in different years and a low rate of interchange among different areas. Migrations between winter regions and feeding areas did not follow a simple pattern, although highest match rates were found for whales that moved between Hawaii and southeastern Alaska, and between mainland and Baja Mexico and California. Interchange among subareas of the three primary wintering regions was extensive for Hawaii, variable (depending on subareas) for Mexico, and low for Japan and reflected the relative distances among subareas. Interchange among these primary wintering regions was rare. This study provides the first quantitative assessment of the migratory structure of humpback whales in the entire North Pacific basin.
Intraspecific resource partitioning and social affiliations both have the potential to structure populations, though it is rarely possible to directly assess the impact of these mechanisms on genetic diversity and population divergence. Here, we address this for killer whales (Orcinus orca), which specialize on prey species and hunting strategy and have long-term social affiliations involving both males and females. We used genetic markers to assess the structure and demographic history of regional populations and test the hypothesis that known foraging specializations and matrifocal sociality contributed significantly to the evolution of population structure. We find genetic structure in sympatry between populations of foraging specialists (ecotypes) and evidence for isolation by distance within an ecotype. Fitting of an isolation with migration model suggested ongoing, low-level migration between regional populations (within and between ecotypes) and small effective sizes for extant local populations. The founding of local populations by matrifocal social groups was indicated by the pattern of fixed mtDNA haplotypes in regional populations. Simulations indicate that this occurred within the last 20,000 years (after the last glacial maximum). Our data indicate a key role for social and foraging behavior in the evolution of genetic structure among conspecific populations of the killer whale.
Killer whales from the coastal waters off California through Alaska were compared for genetic variation at three nuclear DNA markers and sequenced for a total of 520 bp from the mitochondrial control region. Two putative sympatric populations that range throughout this region were compared. They can be distinguished by social and foraging behavior and are known as "residents" and "transients". We found low levels of variation within populations compared to other cetacean species. Comparisons between fish (resident) versus marine mammal (transient) foraging specialists indicated highly significant genetic differentiation at both nuclear and mitochondrial loci. This differentiation is at a level consistent with intraspecific variation. A comparison between two parapatric resident populations showed a small but fixed mtDNA haplotype difference. Together these data suggest low levels of genetic dispersal between foraging specialists and a pattern of genetic differentiation consistent with matrifocal population structure and small effective population size.
Determining management units for natural populations is critical for effective conservation and management. However, collecting the requisite tissue samples for population genetic analyses remains the primary limiting factor for a number of marine species. The harbour porpoise (Phocoena phocoena), one of the smallest cetaceans in the Northern Hemisphere, is a primary example. These elusive, highly mobile small animals confound traditional approaches of collecting tissue samples for genetic analyses, yet their nearshore habitat makes them highly vulnerable to fisheries by-catch and the effects of habitat degradation. By exploiting the naturally shed cellular material in seawater and the power of next-generation sequencing, we develop a novel approach for generating population-specific mitochondrial sequence data from environmental DNA (eDNA) using surface seawater samples. Indications of significant genetic differentiation within a currently recognized management stock highlights the need for dedicated eDNA sampling throughout the population's range in southeast Alaska. This indirect sampling tactic for characterizing stock structure of small and endangered marine mammals has the potential to revolutionize population assessment for otherwise inaccessible marine taxa.
A low level of genetic variation in mammalian populations where the census population size is relatively large has been attributed to various factors, such as a naturally small effective population size, historical bottlenecks and social behaviour. The killer whale (Orcinus orca) is an abundant, highly social species with reduced genetic variation. We find no consistent geographical pattern of global diversity and no mtDNA variation within some regional populations. The regional lack of variation is likely to be due to the strict matrilineal expansion of local populations. The worldwide pattern and paucity of diversity may indicate a historical bottleneck as an additional factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.