Urban impervious surfaces convert precipitation to stormwater runoff, which causes water quality and quantity problems. While traditional stormwater management has relied on gray infrastructure such as piped conveyances to collect and convey stormwater to wastewater treatment facilities or into surface waters, cities are exploring green infrastructure to manage stormwater at its source. Decentralized green infrastructure leverages the capabilities of soil and vegetation to infiltrate, redistribute, and otherwise store stormwater volume, with the potential to realize ancillary environmental, social, and economic benefits. To date, green infrastructure science and practice have largely focused on infiltration-based technologies that include rain gardens, bioswales, and permeable pavements. However, a narrow focus on infiltration overlooks other losses from the hydrologic cycle, and we propose that arboriculturethe cultivation of trees and other woody plantsdeserves additional consideration as a stormwater control measure. Trees interact with the urban hydrologic cycle by intercepting incoming precipitation, removing water from the soil via transpiration, enhancing infiltration, and bolstering the performance of other green infrastructure technologies. However, many of these interactions are inadequately understood, particularly at spatial and temporal scales relevant to stormwater management. As such, the reliable use of trees for stormwater control depends on improved understanding of how and to what extent trees interact with stormwater, and the context-specific consideration of optimal arboricultural practices and institutional frameworks to maximize the stormwater benefits trees can provide.
This article brings together the concepts of shrinking cities-the hundreds of cities worldwide experiencing long-term population loss-and ecology for the city. Ecology for the city is the application of a social-ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city therefore acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compared with growing cities. Shrinking cities are well poised for transformations, because shrinking is perceived as a crisis and can mobilize the social capacity to change. Ecology is particularly well suited to contribute solutions because of the extent of vacant land in shrinking cities that can be leveraged for ecosystem-services provisioning. A crucial role of an ecology for the shrinking city is identifying innovative pathways that create locally desired amenities that provide ecosystem services and contribute to urban sustainability at multiple scales. Forum Urban ecology has undergone a progression from ecology in to an ecology of and now an ecology for the city (Schwarz and Herrmann 2016). Ecology in the city focuses on understanding ecological structure and function in cities using methods and questions similar to traditional ecological studies (McDonnell et al. 1997). Ecology of the city is an
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.