A b s t r a c t LAMP is an innovative, simple, rapid, specific and cost--effective nucleic acid amplification method. Due to the use of a special enzyme -GspSSD polymerase, the reaction takes a short time and can be performed at isothermal conditions. The sensitivity and specificity of LAMP technique is significantly higher, than standard PCR techniques, as two or three specific primer pairs are used. The technique is regarded as a useful tool for the detection and identification of plant pathogens. In this work, LAMP was used to study the composition of the population of fungi of the genus Leptosphaeria, causing a damaging disease of oilseed rape, called blackleg or stem canker. The detection concerned DNA present in fungal spores contained in air samples obtained using Hirst-type volumetric trap, in Pomerania (north Poland) in 2010. The results achieved using the LAMP technique were similar to these obtained with previously used, highly specific method of Real-time PCR. Conducting LAMP reaction was much easier and less time-and cost-consuming, due to a simplified method of DNA isolation of pathogens from plant tissues. Then, the LAMP technique was used to assess the composition of the population of Leptosphaeria spp. in plants of oilseed rape collected from the field in the Opole region (south-western part of Poland) in 2013. In contrast to studies conducted in [2002][2003], the analysis of leaf symptoms showed a higher proportion of L. maculans compared to L. biglobosa, what reflects changes in the composition of pathogen population of fungi causing blackleg on oilseed rape in this part of Poland.
Potato virus Y (PVY) infection has been a global challenge for potato production and the leading cause of downgrading and rejection of seed crops for certification. Accurate and timely diagnosis is a key for effective disease control. Here, we have optimized a reverse transcription loop-mediated amplification (RT-LAMP) assay to differentiate the PVY O and N serotypes. The RT-LAMP assay is based on isothermal autocyclic strand displacement during DNA synthesis. The high specificity of this method relies heavily on the primer sets designed for the amplification of the targeted regions. We designed specific primer sets targeting a region within the coat protein gene that contains nucleotide signatures typical for O and N coat protein types, and these primers differ in their annealing temperature. Combining this assay with total RNA extraction by magnetic capture, we have established a highly sensitive, simplified and shortened RT-LAMP procedure as an alternative to conventional nucleic acid assays for diagnosis. This optimized procedure for virus detection may be used as a preliminary test for identifying the viral serotype prior to investing time and effort in multiplex RT-PCR tests when a specific strain is needed.
Acidic exocellular class II[ chitinase (EC 3.2.1.14) was previously identified in healthy white lupin (Lupim~s albus L.) plants and suspension-cultured cells by N-terminal microsequencing. In this study, the detection of chitinase activity with Remazol Brilliant Violet 5R (RBV)-labelled chitin derivatives is described. Chitinase activity was observed in protein fractions of cytoplasmic or exocellular origin from roots, hypoco@s, cotyledons, and leaves of healthy white hipin plants. Using isoelectrofocusing tollowed by a new overlay technique with carboxymethyl chitin-RBV conjugate-containing gel, up to six different chitinase isoforms were visualised. Their activity was distributed fairly evenly within a plant with acidic isoforms predominating in cell walls and basic (or neutral) ones found intracellularly. Exocellular location of some chitinase isoforms were also confirmed by detection of their activities in intercellular washing fluids from white lnpin tissues. Chitinase activity was demonstrated in culture filtrates and cell walls of suspension-cultured white lupin cells.
A b s t r a c tPlasmodiophora brassicae, the cause of clubroot, is a very serious problem preventing from successful and profitable cultivation of oilseed rape in Poland. The pathogen was found in all main growing areas of oilseed rape; it also causes considerable problems in growing of vegetable brassicas. The aim of this work was to elaborate fast, cheap and reliable screening method to detect P. brassicae. To achieve this aim the Loopmediated isothermal DNA amplification (LAMP) technique has been elaborated. The set of three primer pairs was designed using LAMP software. The detection was performed with the GspSSD polymerase, isolated from bacteria Geobacillus sp., with strand displacement activity. DNA extraction from clubbed roots obtained from farmers' fields of oilseed rape infected by P. brassicae was done using a modified CTAB method. The reaction was performed for 60 min at 62 o C. The visual detection was done using CFX96 Real Time PCR Detection System (BioRad) or Gerie II Amplicatior (Optigen). The detection with LAMP proved its usefulness; it was easy, fast and accurate and independent of plant age. The detection limit was 5 spores per 1 μl of the spore suspension, so LAMP was less sensitive than quantitative PCR tests reported in the literature. However, the method is cheap and simple, so it is a good alternative, when it comes to practical use and the assessment of numerous samples.
This paper reports on the development and validation of a real-time loop-mediated isothermal amplification assay (LAMP) for rapid and specific identification of Gallibacterium anatis. To design a set of 6 primers using the LAMP technique, the conserved region of the G. anatis sodA gene was selected as a target. To evaluate primer specificity we used 120 field strains, the reference strain G. anatis ATCC 43329, and 9 non-G. anatis bacteria. The results confirmed positive reactions for all G. anatis strains tested by LAMP at 63°C for 60 min, with no cross-reactivity observed for the negative control bacteria, i.e., Haemophilus parainfluenzae (ATCC 51505 and ATCC 33392), Aggregatibacter aphrophilus ATCC 7901, Avibacterium endocarditis, Pasteurella multocida, Actinobacillus pleuropneumoniae, Avibacterium paragallinarum, Ornithobacterium rhinotracheale, and Escherichia coli. The lowest detectable amount of DNA for the LAMP reaction was 0.2561 pg, which was detected in about 34 min, while the highest available concentration of the G. anatis reference strain was detected in about 10 min. The lowest detectable amount of DNA for the real-time PCR reaction was 21.24 pg, which was detected in about 20 min, while the highest available concentration of the G. anatis reference strain was detected in about 7 min. Moreover, using the real-time LAMP assay the reaction could be effectively carried out in a volume of just 13 μL, about half the officially recommended reaction volume (25 μL). The aim of this study was to develop a highly sensitive and specific G. anatis real-time LAMP assay that is less time-consuming and less costly than quantitative PCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.