Foliar functional traits are widely used to characterize leaf and canopy properties that drive ecosystem processes and to infer physiological processes in Earth system models. Imaging spectroscopy provides great potential to map foliar traits to characterize continuous functional variation and diversity, but few studies have demonstrated consistent methods for mapping multiple traits across biomes. With airborne imaging spectroscopy data and field data from 19 sites, we developed trait models using partial least squares regression, and mapped 26 foliar traits in seven NEON (National Ecological Observatory Network) ecoregions (domains) including temperate and subtropical forests and grasslands of eastern North America. Model validation accuracy varied among traits (normalized root mean squared error, 9.1-19.4%; coefficient of determination, 0.28-0.82), with phenolic concentration, leaf mass per area and equivalent water thickness performing best across domains. Across all trait maps, 90% of vegetated pixels had reasonable values for one trait, and 28-81% provided high confidence for multiple traits concurrently. Maps of 26 traits and their uncertainties for eastern US NEON sites are available for download, and are being expanded to the western United States and tundra/boreal zone. These data enable better understanding of trait variations and relationships over large areas, calibration of ecosystem models, and assessment of continental-scale functional diversity.
Leaf reflectance spectra have been increasingly used to assess plant diversity. However, we do not yet understand how spectra vary across the tree of life or how the evolution of leaf traits affects the differentiation of spectra among species and lineages. Here we describe a framework that integrates spectra with phylogenies and apply it to a global dataset of over 16 000 leaf-level spectra (400-2400 nm) for 544 seed plant species. We test for phylogenetic signal in spectra, evaluate their ability to classify lineages, and characterize their evolutionary dynamics. We show that phylogenetic signal is present in leaf spectra but that the spectral regions most strongly associated with the phylogeny vary among lineages. Despite among-lineage heterogeneity, broad plant groups, orders, and families can be identified from reflectance spectra. Evolutionary models also reveal that different spectral regions evolve at different rates and under different constraint levels, mirroring the evolution of their underlying traits. Leaf spectra capture the phylogenetic history of seed plants and the evolutionary dynamics of leaf chemistry and structure. Consequently, spectra have the potential to provide breakthrough assessments of leaf evolution and plant phylogenetic diversity at global scales.
Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long-standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking.We explored the capacity to predict LMA from leaf spectra across much of the global LMA trait space, with values ranging from 17 to 393 g m À2 . Our dataset contained leaves from a wide range of biomes from the high Arctic to the tropics, included broad-and needleleaf species, and upper-and lower-canopy (i.e. sun and shade) growth environments.Here we demonstrate the capacity to rapidly estimate LMA using only spectral measurements across a wide range of species, leaf age and canopy position from diverse biomes. Our model captures LMA variability with high accuracy and low error (R 2 = 0.89; root mean square error (RMSE) = 15.45 g m À2 ).Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf optical spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems across global biomes.
In-vivo foliar spectroscopy, also known as contact hyperspectral reflectance, enables rapid and non-destructive characterization of plant physiological status. This can be used to assess pathogen impact on plant condition both prior to and after visual symptoms appear. Challenging this capacity is the fact that dead tissue yields relatively consistent changes in leaf optical properties, negatively impacting our ability to distinguish causal pathogen identity. Here, we used in-situ spectroscopy to detect and differentiate Phytophthora infestans (late blight) and Alternaria solani (early blight) on potato foliage over the course of disease development and explored non-destructive characterization of contrasting disease physiology. Phytophthora infestans, a hemibiotrophic pathogen, undergoes an obligate latent period of two–seven days before disease symptoms appear. In contrast, A. solani, a necrotrophic pathogen, causes symptoms to appear almost immediately when environmental conditions are conducive. We found that respective patterns of spectral change can be related to these differences in underlying disease physiology and their contrasting pathogen lifestyles. Hyperspectral measurements could distinguish both P. infestans-infected and A. solani-infected plants with greater than 80% accuracy two–four days before visible symptoms appeared. Individual disease development stages for each pathogen could be differentiated from respective controls with 89–95% accuracy. Notably, we could distinguish latent P. infestans infection from both latent and symptomatic A. solani infection with greater than 75% accuracy. Spectral features important for late blight detection shifted over the course of infection, whereas spectral features important for early blight detection remained consistent, reflecting their different respective pathogen biologies. Shortwave infrared wavelengths were important for differentiation between healthy and diseased, and between pathogen infections, both pre- and post-symptomatically. This proof-of-concept work supports the use of spectroscopic systems as precision agriculture tools for rapid and early disease detection and differentiation tools, and highlights the importance of careful consideration of underlying pathogen biology and disease physiology for crop disease remote sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.