In-vivo foliar spectroscopy, also known as contact hyperspectral reflectance, enables rapid and non-destructive characterization of plant physiological status. This can be used to assess pathogen impact on plant condition both prior to and after visual symptoms appear. Challenging this capacity is the fact that dead tissue yields relatively consistent changes in leaf optical properties, negatively impacting our ability to distinguish causal pathogen identity. Here, we used in-situ spectroscopy to detect and differentiate Phytophthora infestans (late blight) and Alternaria solani (early blight) on potato foliage over the course of disease development and explored non-destructive characterization of contrasting disease physiology. Phytophthora infestans, a hemibiotrophic pathogen, undergoes an obligate latent period of two–seven days before disease symptoms appear. In contrast, A. solani, a necrotrophic pathogen, causes symptoms to appear almost immediately when environmental conditions are conducive. We found that respective patterns of spectral change can be related to these differences in underlying disease physiology and their contrasting pathogen lifestyles. Hyperspectral measurements could distinguish both P. infestans-infected and A. solani-infected plants with greater than 80% accuracy two–four days before visible symptoms appeared. Individual disease development stages for each pathogen could be differentiated from respective controls with 89–95% accuracy. Notably, we could distinguish latent P. infestans infection from both latent and symptomatic A. solani infection with greater than 75% accuracy. Spectral features important for late blight detection shifted over the course of infection, whereas spectral features important for early blight detection remained consistent, reflecting their different respective pathogen biologies. Shortwave infrared wavelengths were important for differentiation between healthy and diseased, and between pathogen infections, both pre- and post-symptomatically. This proof-of-concept work supports the use of spectroscopic systems as precision agriculture tools for rapid and early disease detection and differentiation tools, and highlights the importance of careful consideration of underlying pathogen biology and disease physiology for crop disease remote sensing.
The swift rise of omics-approaches allows for investigating microbial diversity and plantmicrobe interactions across diverse ecological communities and spatio-temporal scales. The environment, however, is rapidly changing. The introduction of invasive species and the effects of climate change have particular impact on emerging plant diseases and managing current epidemics. It is critical, therefore, to take a holistic approach to understand how and why pathogenesis occurs in order to effectively manage for diseases given the synergies of changing environmental conditions. A multi-omics approach allows for a detailed picture of plant-microbial interactions and can ultimately allow us to build predictive models for how microbes and plants will respond to stress under environmental change. This article is designed as a primer for those interested in integrating-omic approaches into their plant disease research. We review-omics technologies salient to pathology including metabolomics, genomics, metagenomics, volatilomics, and spectranomics, and present cases where multiomics have been successfully used for plant disease ecology. We then discuss additional limitations and pitfalls to be wary of prior to conducting an integrated research project as well as provide information about promising future directions.
Plant pathology has developed a wide range of concepts and tools for improving plant disease management, including models for understanding and responding to new risks from climate change. Most of these tools can be improved using new advances in artificial intelligence (AI), such as machine learning to integrate massive data sets in predictive models. There is the potential to develop automated analyses of risk that alert decision-makers, from farm managers to national plant protection organizations, to the likely need for action and provide decision support for targeting responses. We review machine-learning applications in plant pathology and synthesize ideas for the next steps to make the most of these tools in digital agriculture. Global projects, such as the proposed global surveillance system for plant disease, will be strengthened by the integration of the wide range of new data, including data from tools like remote sensors, that are used to evaluate the risk of plant disease. There is exciting potential for the use of AI to strengthen global capacity building as well, from image analysis for disease diagnostics and associated management recommendations on farmers’ phones to future training methodologies for plant pathologists that are customized in real-time for management needs in response to the current risks. International cooperation in integrating data and models will help develop the most effective responses to new challenges from climate change. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.