The aim of this work is to investigate, how in the adopted model of hydrodynamic lubrication of a conical slide bearing, the change of the heat flux value at the bearing shaft, affects bearing operating parameters. In this research, the authors use, the known from the literature, Reynolds type equation, describing the stationary hydrodynamic lubrication process of a conical slide bearing. The analytical, solutions, that determine the components of the lubricating oil velocity vector and the equation (analytical solution of energy equation) determining the three-dimensional temperature distribution in the lubrication gap, was also adopted from previous works. In order to obtain numerical solutions, the Newton’s method was used, and the derivatives in the Reynolds type equation were approximated by the finite differences. An application of the method of subsequent approximations allowed considering the influence of temperature, pressure and shearing rate on the viscosity of lubricating oil. The considerations were performed by adopting the Reynolds condition of the hydrodynamic oil film. It was tested, how the assumed value of the heat flux on the bearing shaft surface affects the values of the obtained operating parameters, i.e. the transverse and longitudinal component of the load carrying capacity, friction force and coefficient of friction.
In this work is shown the result of CFD simulation of hydrodynamic conical bearing lubrication with consideration of non-isothermal oil flow in a bearing lubrication gap and also with assumption, that oil has non-Newtonian properties. The determination of hydrodynamic pressure distribution in bearing gap was carried out by using the commercial CFD software ANSYS Academic Research for fluid flow phenomenon (Fluent). Calculations were performed for bearings without misalignment, i.e. where the cone generating line of bearing shaft is parallel to the cone generating line of bearing sleeve. The Ostwald-de Waele model for non-Newtonian fluids was adopted in this simulation. The coefficients of Ostwald-de Waele relationship were determined by application of the least squares approximation method and fitting curves described by this model to the experimental data, obtained for some motor oils, presented in previous work. The calculated hydrodynamic pressure distributions were compared with the data obtained for corresponding bearings, but assuming that the flow in the bearing lubrication gap is isothermal. Some other simplifying assumptions are: a steady-state operating conditions of a bearing, incompressible flow of lubricating oil, no slip on bearing surfaces, pressure on the side surfaces of bearing gap is equal to atmospheric pressure. This paper presents results for bearings with different rotational speeds and of different bearing gap heights.
One of the most important physical quantities which has an influence on bearings and micro-bearings functioning is the viscosity of a lubricant. The data about a viscosity value dependence on temperature and shear rate are essential for designing sliding friction pairs. In design calculations usually there is assumed that a lubricant is a Newtonian fluid, therefore viscosity is constant over the full range of shear rates. During operation of friction pairs the contamination particles get into a lubricant and this causes that the lubricant becomes a non-Newtonian pseudoplastic or viscoelastic fluid. A similar effect on lubricating oil properties have combustion products or special performance additives. Furthermore, a lubricating oil ages and wears out, i.e. during its operating the initial structure of a particles is destroyed which can cause the change of the oil viscosity and lubricity values. The aim of this work is to determine the dynamic viscosity values in dependence on temperature and shear rate for selected new and used lubricating oils. In this research motor oils for passenger vehicles and tractors were investigated. This paper presents the results of measurements of the viscosity changes, in dependence on shear rate and temperature, made for the new and used oils. One of the investigated oils is Superol CC-40, which was used in four-stroke 4562 cm3 diesel engine for twenty months, which corresponds to 250 hours of operating. The second of investigated oils is Shell Helix Ultra AV-L which was used in four-stroke 2000 cm3 diesel engine for ten months at a distance of 15 000 kilometers. The viscosity measurements for the new and used lubricating oils were made with the Thermo Scientific Haake Mars III rheometer, in the range of temperatures from 10°C to 120°C and of shear rates to 51000 1/s. Moreover, the analysis of wear products, contaminants and additives in the investigated new and used lubricating oils was made with the rotating disc electrode atomic emission spectrometer Spectro Incorporated Spectroil Q100, which gives possibility to determine 22 most common elements which occur in motor, turbine and gear oils. The obtained information will be used in future studies related to hydrodynamic lubrication of slide bearings and micro-bearings. It also may be useful for designing bearings and sliding friction pairs.
The purpose of this article is to determine, identify and describe the viscosity characteristics of the ferro-oil with different concentrations of magnetic particles in the presence of an external magnetic field interaction. These characteristics are defined in the context of magnetic induction changes. These rheological tests were performed on a Physica MCR 301 rheometer. It was used a measuring system 'plate to plate' type which was armed with magneto-rheological research system MRD 180/1T. The tests were performed for the selected temperature of the medium i.e. 90°C, the shear rate changes were carried from 0 to 1000 1/s. Changes of the magnetic field intensity value were ranged from 0 to 500 mT. The selected concentrations of magnetic particles in a ferro-oil were 1%, 2%, 4%, 6% and 8% and the tested ferro-oil was product of FerroTec of Unterensingen (Germany), which is a mixture of colloidal mineral motor oil Penzzoil's LongLife Gold's SAE 15W-40 with Fe 3 O 4 magnetic particles and the surfactant. Analyses of the results, identify and matching characteristic were calculated using STATISTICA software. It has been proposed three categories of functions mapping the waveforms of the results obtained experimentally: the exponential function, logarithmic with basis of the normal and the polynomial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.