We performed simultaneous, multispectral CRDS measurements that for the first time use the Supercontinuum light source. We called this approach Supercontinuum Cavity Ring-Down Spectrography (SC CRDSpectrography) and successfully applied it to measuring the absorption spectrum of NO2 gas at a concentration of 2 ppm. The extrapolated sensitivity of our setup was much greater, about 5 ppb. The ppb sensitivity level is comparable to this obtainable with single wavelength dye-lasers based CRDS systems. It is, therefore, feasible to construct extremely broadband and sensitive CRDS devices basing on the SC CRDSpectrography scheme.
Ultrafiltration (UF) polyethersulfone (PES) membranes were prepared by wet phase inversion method. Commercial halloysite nanotubes (HNTs) in the amount of 0.5–4 wt % vs PES (15 wt %) were introduced into the casting solution containing the polymer and N,N-dimethylformamide as a solvent. The morphology, physicochemical properties and performance of the membranes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), zeta potential, porosity and contact angle analyses, as well as permeability measurements. Moreover, the antifouling properties of the membranes were evaluated during UF of a model solution of bovine serum albumin (BSA). The research revealed a positive influence of modification with HNTs on hydrophilicity, water permeability and antifouling properties of the PES membranes. The most significant improvement of permeability was obtained in case of the membrane containing 2 wt % of HNTs, whereas the highest fouling resistance was observed for 0.5 wt % HNTs content. It was found that a good dispersion of HNTs can be obtained only at loadings below 2 wt %. Based on the results a relation between severity of membrane fouling and surface roughness was proved. Moreover, an increase of the roughness of the modified membranes was found to be accompanied by an increase of isoelectric point values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.