High-powered Diesel engines typically use a timing gear train to couple/synchronize the camshaft rotation with the crankshaft and also to drive the accessories such as the fuel and oil pumps. In this paper a high-fidelity multibody dynamics model of a 6-cylinder inline Diesel engine and its timing gear train is presented. The multibody system representing the system is modeled using rigid bodies, torsional springs, revolute joints, prismatic joints, and rotational/linear actuators. A penalty model is used to impose joint and normal contact constraints. The normal contact penalty stiffness and damping techniques are used to model gear tooth stiffness and damping. The contact model detects contact between discrete points on the surface of a gear tooth (master contact surface) and a polygonal surface representation of the mating gear tooth (slave contact surface). A recursive bounding box/bounding sphere contact search algorithm is used to allow fast contact detection. Time-varying forces are applied to the cylinders to model the cylinder pressure variations due to combustion events as a function of the crank angle. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model is partially validated by comparing its predictions of the torsional vibrations of a Diesel engine’s crankshaft and moving parts to experimental measurements. Emphasis is given on the practicality of the modeling methods to industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.