The paper describes a fully automated process to generate a shell-based finite element model of a large hybrid truck chassis to perform mass optimization considering multiple load cases and multiple constraints. A truck chassis consists of different parts that could be optimized using shape and size optimization. The cross members are represented by beams, and other components of the truck (batteries, engine, fuel tanks, etc.) are represented by appropriate point masses and are attached to the rail using multiple point constraints to create a mathematical model. Medium-fidelity finite element models are developed for front and rear suspensions and they are attached to the chassis using multiple point constraints, hence creating the finite element model of the complete truck. In the optimization problem, a set of five load conditions, each of which corresponds to a road event, is considered, and constraints are imposed on maximum allowable von Mises stress and the first vertical bending frequency. The structure is optimized by implementing the particle swarm optimization algorithm using parallel processing. A mass reduction of about 13.25% with respect to the baseline model is achieved.
High-powered Diesel engines typically use a timing gear train to couple/synchronize the camshaft rotation with the crankshaft and also to drive the accessories such as the fuel and oil pumps. In this paper a high-fidelity multibody dynamics model of a 6-cylinder inline Diesel engine and its timing gear train is presented. The multibody system representing the system is modeled using rigid bodies, torsional springs, revolute joints, prismatic joints, and rotational/linear actuators. A penalty model is used to impose joint and normal contact constraints. The normal contact penalty stiffness and damping techniques are used to model gear tooth stiffness and damping. The contact model detects contact between discrete points on the surface of a gear tooth (master contact surface) and a polygonal surface representation of the mating gear tooth (slave contact surface). A recursive bounding box/bounding sphere contact search algorithm is used to allow fast contact detection. Time-varying forces are applied to the cylinders to model the cylinder pressure variations due to combustion events as a function of the crank angle. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model is partially validated by comparing its predictions of the torsional vibrations of a Diesel engine’s crankshaft and moving parts to experimental measurements. Emphasis is given on the practicality of the modeling methods to industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.