The ventral pallidum (VP) lies at the interface between sensory, motor, and cognitive processing—with a particular role in mounting behavioral responses to rewards. Though the VP is predominantly GABAergic, glutamate neurons were recently identified, though their relative abundances and respective roles are unknown. Here, we show that VP glutamate neurons are concentrated in the rostral ventromedial VP and project to qualitatively similar targets as do VP GABA neurons. At the functional level, we used optogenetics to show that activity in VP GABA neurons can drive positive reinforcement, particularly through projections to the ventral tegmental area (VTA). On the other hand, activation of VP glutamate neurons leads to behavioral avoidance, particularly through projections to the lateral habenula. These findings highlight cell-type and projection-target specific roles for VP neurons in behavioral reinforcement, dysregulation of which could contribute to the emergence of negative symptoms associated with drug addiction and other neuropsychiatric disease.
Summary A key feature of escape responses is the fast translation of sensory information into a coordinated motor output. In C. elegans anterior touch initiates a backward escape response in which lateral head movements are suppressed. Here we show that tyramine inhibits head movements and forward locomotion through the activation of a tyramine-gated chloride channel, LGC-55. lgc-55 mutant animals have defects in reversal behavior and fail to suppress head oscillations in response to anterior touch. lgc-55 is expressed in neurons and muscle cells that receive direct synaptic inputs from tyraminergic motor neurons. Therefore, tyramine can act as a classical inhibitory neurotransmitter. Activation of LGC-55 by tyramine coordinates the output of two distinct motor programs, locomotion and head movements that are critical for a C. elegans escape response.
The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-tohematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system.
Summary Previous studies have raised the possibility that Wnt signaling may regulate both neural progenitor maintenance and neuronal differentiation within a single population. Here we investigate the role of Wnt/β-catenin activity in the zebrafish hypothalamus and find that the pathway is first required for the proliferation of unspecified hypothalamic progenitors in the embryo. At later stages, including adulthood, sequential activation and inhibition of Wnt activity is required for the differentiation of neural progenitors and negatively regulates radial glia differentiation. The presence of Wnt activity is conserved in hypothalamic progenitors of the adult mouse, where it plays a conserved role in inhibiting the differentiation of radial glia. This study establishes the vertebrate hypothalamus as a model for Wnt-regulated post-embryonic neural progenitor differentiation, and defines specific roles for Wnt signaling in neurogenesis.
Summary Postembryonic neurogenesis has been observed in several regions of the vertebrate brain, including the dentate gyrus and rostral migratory stream in mammals, and is required for normal behavior [1–3]. Recently the hypothalamus has also been shown to undergo continuous neurogenesis as a way to mediate energy balance [4–10]. As the hypothalamus regulates multiple functional outputs, it is likely that additional behaviors may be affected by postembryonic neurogenesis in this brain structure. Here, we have identified a progenitor population in the zebrafish hypothalamus that continuously generates neurons that express tyrosine hydroxylase 2 (th2). We develop and use novel transgenic tools to characterize the lineage of th2+ cells and demonstrate that they are dopaminergic. Through genetic ablation and optogenetic activation we then show that th2+ neurons modulate the initiation of swimming behavior in zebrafish larvae. Finally we find that the generation of new th2+ neurons following ablation correlates with restoration of normal behavior. This work thus identifies for the first time a population of dopaminergic neurons that regulates motor behavior capable of functional recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.