Summary Previous studies have raised the possibility that Wnt signaling may regulate both neural progenitor maintenance and neuronal differentiation within a single population. Here we investigate the role of Wnt/β-catenin activity in the zebrafish hypothalamus and find that the pathway is first required for the proliferation of unspecified hypothalamic progenitors in the embryo. At later stages, including adulthood, sequential activation and inhibition of Wnt activity is required for the differentiation of neural progenitors and negatively regulates radial glia differentiation. The presence of Wnt activity is conserved in hypothalamic progenitors of the adult mouse, where it plays a conserved role in inhibiting the differentiation of radial glia. This study establishes the vertebrate hypothalamus as a model for Wnt-regulated post-embryonic neural progenitor differentiation, and defines specific roles for Wnt signaling in neurogenesis.
At least 50% of patients with tuberous sclerosis complex present with intractable epilepsy; for these patients, resective surgery is a treatment option. Here, we report a nationwide multicentre retrospective study and analyse the long-term seizure and neuropsychological outcomes of epilepsy surgery in patients with tuberous sclerosis complex. There were 364 patients who underwent epilepsy surgery in the study. Patients’ clinical data, postoperative seizure outcomes at 1-, 4-, and 10-year follow-ups, preoperative and postoperative intelligence quotients, and quality of life at 1-year follow-up were collected. The patients’ ages at surgery were 10.35 ± 7.70 years (range: 0.5–47). The percentage of postoperative seizure freedom was 71% (258/364) at 1-year, 60% (118/196) at 4-year, and 51% (36/71) at 10-year follow-up. Influence factors of postoperative seizure freedom were the total removal of epileptogenic tubers and the presence of outstanding tuber on MRI at 1- and 4-year follow-ups. Furthermore, monthly seizure (versus daily seizure) was also a positive influence factor for postoperative seizure freedom at 1-year follow-up. The presence of an outstanding tuber on MRI was the only factor influencing seizure freedom at 10-year follow-up. Postoperative quality of life and intelligence quotient improvements were found in 43% (112/262) and 28% (67/242) of patients, respectively. Influence factors of postoperative quality of life and intelligence quotient improvement were postoperative seizure freedom and preoperative low intelligence quotient. The percentage of seizure freedom in the tuberectomy group was significantly lower compared to the tuberectomy plus and lobectomy groups at 1- and 4-year follow-ups. In conclusion, this study, the largest nationwide multi-centre study on resective epilepsy surgery, resulted in improved seizure outcomes and quality of life and intelligence quotient improvements in patients with tuberous sclerosis complex. Seizure freedom was often achieved in patients with an outstanding tuber on MRI, total removal of epileptogenic tubers, and tuberectomy plus. Quality of life and intelligence quotient improvements were frequently observed in patients with postoperative seizure freedom and preoperative low intelligence quotient.
As a common complication of tendon injury, tendon adhesion is an unresolved problem in clinical work. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos), one of the most promising new-generation cell-free therapeutic agents, can improve tendon adhesion and explore potential-related mechanisms. Methods: The rat Achilles tendon injury adhesion model was constructed in vivo, and the localization of HUMSC-Exos was used to evaluate the tendon adhesion. Rat fibroblast cell lines were treated with transforming growth factor β1 (TGF-β1) and/or HUMSC-Exos in vitro, and cell proliferation, apoptosis and gene expression were measured. MicroRNA (miRNA) sequencing and quantitative PCR (qPCR) analysis confirmed differential miRNAs. A specific miRNA antagonist (antagomir-21a-5p) was used to transform HUMSC-Exos and obtain modified exosomes to verify its efficacy and related mechanism of action. Results: In this study, we found HUMSC-Exos reduced rat fibroblast proliferation and inhibited the expression of fibrosis genes: collagen III (COL III) and α-smooth muscle actin (α-SMA) in vitro. In the rat tendon adhesion model, topical application of HUMSC-Exos contributed to relief of tendon adhesion. Specifically, the fibrosis and inflammationrelated genes were simultaneously inhibited by HUMSC-Exos. Further, miRNA sequencing of HUMSCs and HUMSC-Exos showed that miR-21a-3p was expressed at low abundance in HUMSC-Exos. The antagonist targeting miR-21a-3p was recruited for treatment of HUMSCs, and harvested HUMSC-Exos, which expressed low levels of miR-21a-3p, and expanded the inhibition of tendon adhesion in subsequent in vitro experiments. Conclusion: Our results indicate that HUMSC-Exos may manipulate p65 activity by delivering low-abundance miR-21a-3p, ultimately inhibiting tendon adhesion. The findings may be promising for dealing with tendon adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.