Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.
Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.
Background:Fenretinide, an in-trial chemotherapeutic, improves insulin sensitivity in mice and humans. Results: Fenretinide reduces Des1 expression and prevents ceramide accumulation, while protecting against lipid-induced insulin resistance. Conclusion: Fenretinide decreases ceramide biosynthesis, and increases levels of dihydroceramides, thus preserving insulin responsiveness. Significance: These data suggest that Des1 may be a viable therapeutic target for normalizing glucose homeostasis.
At least 50% of patients with tuberous sclerosis complex present with intractable epilepsy; for these patients, resective surgery is a treatment option. Here, we report a nationwide multicentre retrospective study and analyse the long-term seizure and neuropsychological outcomes of epilepsy surgery in patients with tuberous sclerosis complex. There were 364 patients who underwent epilepsy surgery in the study. Patients’ clinical data, postoperative seizure outcomes at 1-, 4-, and 10-year follow-ups, preoperative and postoperative intelligence quotients, and quality of life at 1-year follow-up were collected. The patients’ ages at surgery were 10.35 ± 7.70 years (range: 0.5–47). The percentage of postoperative seizure freedom was 71% (258/364) at 1-year, 60% (118/196) at 4-year, and 51% (36/71) at 10-year follow-up. Influence factors of postoperative seizure freedom were the total removal of epileptogenic tubers and the presence of outstanding tuber on MRI at 1- and 4-year follow-ups. Furthermore, monthly seizure (versus daily seizure) was also a positive influence factor for postoperative seizure freedom at 1-year follow-up. The presence of an outstanding tuber on MRI was the only factor influencing seizure freedom at 10-year follow-up. Postoperative quality of life and intelligence quotient improvements were found in 43% (112/262) and 28% (67/242) of patients, respectively. Influence factors of postoperative quality of life and intelligence quotient improvement were postoperative seizure freedom and preoperative low intelligence quotient. The percentage of seizure freedom in the tuberectomy group was significantly lower compared to the tuberectomy plus and lobectomy groups at 1- and 4-year follow-ups. In conclusion, this study, the largest nationwide multi-centre study on resective epilepsy surgery, resulted in improved seizure outcomes and quality of life and intelligence quotient improvements in patients with tuberous sclerosis complex. Seizure freedom was often achieved in patients with an outstanding tuber on MRI, total removal of epileptogenic tubers, and tuberectomy plus. Quality of life and intelligence quotient improvements were frequently observed in patients with postoperative seizure freedom and preoperative low intelligence quotient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.